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ABSTRACT
Roughly speaking, O, » asserts the existence of a sequence of size < & sets
that captures every subset of A on a stationary set. The paper is devoted
to the study of { » and related principles, which are for instance obtained
by considering sequences of larger sets, or by requesting the simultaneous
capture of many subsets of A. Our main result is that $. ) holds in case
A> 2%k,

0. Introduction

Let « be a regular uncountable cardinal, and let S be a subset of x. Jensen [10]
introduced the following combinatorial principle: {.(S) asserts the existence of
a sequence o, a < K, that “captures” each subset 4 of k on a stationary subset
of S, by which we mean that {& € S: s, = ANa} € NS}. The starred version
of diamond, ¢*(S) states that there exist wy € [P(a)]$l?l, & < &, such that
{a€8:ANa g w,} € NS, for all A C «. If S is stationary, then by a result
of Kunen, $%(S) implies ¢x(S), as ¢x(S) holds iff there are w, € [P(a)]<lo,
a < &, such that {a € S:ANa € wy} € NSH forall AC &.

A two cardinal version of diamond was introduced by Jech in [9]. Let « be a
regular uncountable cardinal, let A > & be a cardinal, and let § C [A\]<*. Then
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O, A(S) asserts the existence of a sequence s,, a € [A]<*, such that
{a€8:3, =ANa} ENS:"A forall AC A

Such a sequence is called a . 1(S)— sequence. To see that we are dealing
here with a generalization of the one cardinal principle, observe that {. «(S) is
equivalent to $«x(S N &), and that k € NSy .. Whereas the original principle
has been widely used in applications, it has not been so for its analogue for two
cardinals. {« A(S) is however not trivial, as it implies that S can be split into
A<* many pairwise disjoint stationary subsets. S has thus to be a “large” (i.e.
of maximal cardinality) subset of [\]<*. Now a stationary subset of [\]<* is not
necessarily large, unless the GCH is assumed. Moreover, Gitik {7] showed that
even if all stationary subsets of [A]<* are large, some of them may fail to have the
splitting property. This is in contrast to a result of Solovay that states that every
stationary subset of k splits into ¥ many pairwise disjoint stationary subsets.

It has therefore seemed appropriate to us to prelude our study of diamond with
a few sections dealing with the size of various stationary subsets of [A]<*.

After setting some notation in Section 1, we consider in Section 2 some (in)-
equalities that are relevant to the computation of s(x,A), which is the least
cardinality of any stationary set in [A]<*. Except for a striking recent result of
Shelah [21] , which is given without proof, all other results are by now folklore.

Section 3 opens with a characterization of the closed unbounded filter NS ,.
Briefly, D € NS , iff there is F: A x A — X such that D contains all a € [A]<*
such that Fla x a] € a and a N & € k. The result goes back to Kueker [11],
who used functions defined on [A]<“, and in the present formulation is due to
Baumgartner (see [5]). It is natural to wonder whether one can do without the
extra condition on a N x. It is well-known that one can in case k¥ = w;. The case
K > wy, where the picture is no longer so clear-cut, has been treated by Feng [6].
We observe that the condition can be somewhat relaxed. For instance in case
K = wp+1, it is enough to require that a Nwy, is unbounded in w,. It is known
that assuming A > &, the equivalence above no longer holds, if a single variable
function G: A — X is substituted for F. Still, one may ask whether it is possible
to get away with functions G: g X A — A, where p is some fixed cardinal < A.
Proposition 3.3 answers that question, except for the case when A is the successor
of a singular cardinal, which remains open.

The end of Section 3 and the whole of Section 4 are devoted to the study of some

special stationary sets. We attempt to generalize some results of Baumgartner
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[2]. Assume we are given two finite sets A C [k, A\] and B C « of regular cardinals,
and ¢: A — B. Let T be the set of all a € [A]<* such that

U(aNp) € {a < p: cof(a) = p(p)} for all u € A.

Then T is stationary. Moreover, assuming there is some v € A such that v > &
and ¢(v) = w, there are at least v™° distinct members of TND for all D € NS ,.
It is easy to think of several ways to strengthen this statement. For one thing, we
show that one can find v®° incomparable members of T N D in case v is finitely
many cardinals away from «. Another way to improve the statement would be to
replace in the definition of T {& < u: cof(a) = ¢(g)} by an arbitrary stationary
subset of {a < p: cof(a) < k}. We show in Proposition 9.4 that it can be done
in case kK = w;.

Fix a regular cardinal ¢ < , and consider the set of all a € « with cof(a) = p.
Such an a is internally accessible, in the sense that it has a subset b of size u
with (Jg¢; B = a. Section 5 is devoted to a brief study of a two cardinal version
of this notion. Clearly if A > &, then the coding of a by b cannot in general
be accomplished via the identity function h(8) = B; so one has instead recourse
to a fixed h: A — [A]<*. This approach is especially helpful when one discusses
Qx,) in situations where the GCH is not assumed. This has already been done
by Shelah in [20].

Several attempts have been made to adapt the method used by Gregory [8] in
his proof of {* to the two cardinal situation. Section 6 is the account of one of
them, actually a rather crude one, as it yields diamond, and not even diamond
star.

We see in Section 7 how to obtain { . 1(S)-sequences by forcing. Here and in
Section 14 we only use simple forcing notions, namely those for adding Cohen
subsets of a regular uncountable cardinal. As is well-known, forcing one Cohen
subset of v yields diamond at v (and thus collapses 2<” to v in the process).
It yields actually much more, i.e. ¢, 1(S)-sequences for all A > v, as well as
O x,v(8)-sequences for all £ < v. For the bottom-up direction, our main result is
that adding one Cohen subset of w; is enough to get {y,,A(S5) for every A > w;
and every stationary S in the ground model. As regards the other, top-down,
direction, we have the result of [15]: adding one Cohen subset of A gives O« 2(S)
for all K < X and all stationary S in the ground model. As an aside, let us
remark that this construction requires A to be regular. We do not know how
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to handle the case when )\ is singular (and of cofinality > &, which seems to
be the most interesting case). It is easy to extract from the proof a stronger
principle, ¢4: a: A(S), which reads as follows : there are B, C A, a < A, such
that {a € S: BysNa=ANa} € NS::X for all AC A As Oy x: «(S) simplyis a
reformulation of ¢ «(S), one can see Q. a: A(S) as an alternative generalization
of the one cardinal diamond. The little we know about that new principle is

expounded in Section 7.

Section 8 presents yet another two cardinal version of diamond. This time
the idea is to modify the definition so as to make possible the capture of more
than one set at a time. To be more accurate, we intend to capture families (as
opposed to sequences) of sets. Is there an absolute upper limit on the size of
the families that can be thus captured? That is of course to be expected, but
we have been unable to show that any such limit exists. Let us now state our
principle: Oif;(S) asserts the existence of a sequence ¢, C P(a), a € [A]<*, such
that {a € S:t, = {ANa: A€ E}} € NS:,A for all E C P(A) with |E| < A<,
Let us first observe that (},’::: (S) is easily shown to be equivalent to ¢ «(S). As
for the case when A > &, it seems that once ¢ (S) has been established, the
truth-value of Oﬁf; (S) very much depends on the prevailing cardinal arithmetic.
In any case, we show in Corollary 10.4 that assuming the GCH, ¢ 1(S) implies
the apparently stronger Oi‘f; (S). Diamond principles have originated in the
study of the constructible universe (where of course the GCH holds), and this
may explain why Oﬁf; has not appeared in the literature before.

Shelah showed in [20] that ¢y, ,+(S) holds for some S provided p® = pu.
Section 9 is devoted to a generalization of that result. Let v be a regular cardinal
with £k < v < ), and set T = {a € [A\]<*: cof(U(a N v)) = w}. As was remarked
above, we have |T| > v™, as T is somewhat ramified. 7T is however not necessarily
large. For example, if A = &%, then |T| equals (k% )%°, which may be less than
(k*)<*. We show that Q. a(T) holds if we assume that 2<* < v. Notice that
the assumption insures that every stationary subset of [\]<* is large. To get our
result, we modify the games that Shelah used in his proof. Extra care in the
definition of the games allows us to extend the result to the case when & = w;
and A = 2%, assuming that 2%° is regular, and that 2% > w;. The second
assumption is clearly necessary, as Jensen showed that ¢, does not follow from
CH, but the status of the first one is not so clear.

Let $«,2,2(S) denote the following assertion : there are s4, a € [A]<*, such that
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{a€ S:s,=ANUa} € NS':,,\ for all A C A. Here again, we have that ¢ «(5)
is (trivially) equivalent to O «,x(S). The principle ¢, x A(S) is the last one of
the paper in our series of two cardinal versions of diamond. It is considered in
Section 10, where we show it to be implied by (and thus equivalent to) ¢« a(S)
under the GCH.

Many more diamond sequences can be defined from a given diamond sequence.
It is for example shown in Section 11 that assuming the GCH, ¢ 1(S) implies
Oxp({a: an X € S}) for every cardinal v > A. Provided certain conditions are
fulfilled (see Proposition 11.4), it is also possible to go down from ¢, to ¢4,
where u < k. Here again we follow in the footsteps of Shelah [20].

The remainder of the paper is devoted to the study of starred versions of some
of the principles considered above. 0::\; “(S) and Oraa(5) are respectively
featured in Section 12 and in Section 13. It is shown in Section 12 that assuming
the GCH, 07 ,(S) holds for every S C {a € [A]<": cof(Ua) # cof(|a)}. One may
wonder whether that result is sharp, i.e. whether there are models of the GCH
where O} () fails for every stationary § C {a € [A]<*: cof(Ua) = cof(la])}.
The answer is immediate in case cof()A) < & and & is the successor of a cardinal
v with cof(v) # cof(A). One also gets a positive answer when x = ), and when «
is the successor of a cardinal of cofinality w and X is regular. Those results and
related forcing constructions can be found in Section 14.

The results of Sections 9, 10, 12 and 14 are joint work of the authors. Sections
2-8, 11 and 13 are due to the second author.

1. Notation
We let On denote the class of all ordinals. Given a,8 € On with a < 8, we let
(@6) = {v € On: @ < 7 < A}, [28) = (@,8) U {a}, (& ] = (@5) U {8} and
(@, 8] = (a, B) U {e, B}. We set REP = Rqip.

Given an ideal I over a set X, weput It = {BC X: B¢ I} and I* =
{BCX:X — BeI}. Given aset X and a cardinal v, we let

[X]" = {B C X:|B| =v},[X]< = (J [X]" and [X]* = [X]<" U[X]".
vi<y

Throughout the paper « will denote a regular uncountable cardinal, and A a
cardinal with A > k. Let X be a set of size > «, and let A C [X]<*. A is said
to be unbounded in case [X]<* = |J,¢ 4 P(a). 4 is closed if for every sequence
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aq € A, a < 74 < &, such that ag C a, for f < a, we have Ua<7aa € A. By
a result of Solovay, A is closed iff A is closed under directed unions of size < «.
A is stationary if A N B # 0 for every closed unbounded subset B of [X]<*.
Nonstationary subsets of [X]<* form an ideal, which we denote by NS, x. We
put NS, = NS, N P(x).

We let ND, » denote the set of all § C [A]<* such that ¢ (S) does not
hold. We set ND, = ND,x N P(x). For any § C [A]<*, {5 ,(S) asserts the
existence of a sequence w, € [P(a)]$!%l, a € [\]<*, such that for all A C ),
{a€ S: ANa g ws} € NSka. Oxa(S) follows from O 4(S) in case § € NS:,,\,
as $x,(S) holds whenever there are w, € [P(a)]$1%l, a € [A]<*, such that for all
Ac )\ {a€S:ANnacw,} € NST,. Welet D , be the set of all § C [A]<*
such that ¢} 5(S) holds.

For any set a, @ will denote a fixed bijection from |a| onto a. Given an infinite
limit ordinal @, & will denote a strictly increasing function from cof(a) onto some
fixed closed unbounded subset C of a of order type cof(a).

Given cardinals 4 > w and v > 0, and a set I with |I| > p, Fn(I, v, ) denotes
the set of all functions p such that dom(p) € [I]<# and ran(p) C v, ordered by
reverse inclusion. For each cardinal p > 0, Fn(p X p,2, 1) is the poset for adding
p many Cohen subsets of p.

2. Unbounded subsets of [\]<*

We let s(x,A) (respectively u(x, A)) be the smallest cardinality of any stationary
(resp. unbounded) subset of [A]<*.

The second author asked whether u(x,)) and s(x,)) are equal. Shelah [21]
recently showed that they are:

PROPOSITION 2.1: 3(x, ) = u(x,A).

PROPOSITION 2.2: (i) u(x,A) > A
(i) cof(u(k,A)) 2 «.

Proof: (i) Use the fact that A = UE for every unbounded subset E of [A]<*.

(ii) Suppose otherwise, and let E be an unbounded subset of [A]<* with |E| =
u(x,A). Pick E, € [E]<**", a < cof(u(k,]))), so that E = Ua<cot(u(s,n)) Ea-
For each a, choose a, € [A\]<* such that for every e € E4, aq — € # 0. Then
clearly U, <cof(u(x,)) %o — ¢ # 0 for all e € E, a contradiction. ]
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PROPOSITION 2.3: A<F = 2<% . y(k, A).
Proof: Simply notice that [A]<* = J,¢ P(e) for every unbounded subset E of
[A]<*. |

Thus u(x, A) = A<* whenever X > 2<%,
COROLLARY 2.4: Assume ) is a strong limit with cof(\) < k. Thenu(k,)) = 2*.
Proof: We have 2<% < X and A<* = 22, |

PROPOSITION 2.5: Let v, u,p be cardinals such that v € [k, p],cof(v) = v, v <
pt, k < pand A < p. Then u(k,A) < u(x, p) - u(vy, p).

Proof: Let E and H be given such that E is unbounded in [p]<* and H is
unbounded in [p]<*. We claim that the set of all G[dN|aj]NA,a € Eandd € H,
is unbounded in [A]<*. Given b € [\]<*, start by picking a € E with b C a, and
then select d € H with a~1[b] C d. We have b C a[dN |a|] N A. |

PROPOSITION 2.6: Assume X is a limit with A > k.
(i) If cof(X) > «, then u(k,A) = Urcpcr u(%,v).
(ii) If cof (A) < &, and if v > &, & < cof()), is an increasing and cofinal in A
sequence of cardinals, then u(#,A) < (Ug<cot(n) ¥ Vo)),

Proof: (i) Set A = Uy<cot(r) Yo» Where each v, is a cardinal with £ < va <
A. Now observe that if E, is an unbounded subset of [v4]<* for each «, then
Ua<cot(n) Ea is an unbounded subset of [A]<*.

(ii) For each a < cof()), let E, be an unbounded subset of [v,]<*. Given
d € [A]<*, pick a4 € E,4, a < cof()), with dN vy C ao. Then d C Ua<co,(,\) A
|

3. Closed unbounded subsets of [\]<*

PROPOSITION 3.1: Let D € NS} ,. Then there exists F: {(f,a) € A x \: § <
a} — X such that a € D whenever a satisfies the following conditions :
(i) a e A< - {0};
(ii) F(B,a) € a whenever f,a € a with < a;
(iii) for every successor cardinal v € U(a N k), there exists n < w such that
vt* € U(ank) and [anvth| = vt

Proof: By induction on the size of d, define a4 € D, d € [A]<¥, so that d C aq4,
and a. C aq for ¢ C d. Givenn € [1,w), let fat1: [A]**! — ) satisfy the following
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conditions. Suppose d € [A]", and let d;, p < n, be the increasing enumeration
of d. Then

(0) fa+1(dV {dn—1 +1}) = |adl;

(1) fat1(dU {dn-1 + 2k + 2}) = @4(di) whenever k¥ < n and di € |aq4|;

(2) fas1(dU{dn-1+2k+3}) = az_(4,}(ds) whenever k <nandd; € lag—ga,3 -
Also define g;: [A]? = ), i < 2, so that

(3) 90(B, ) = a(B) whenever 8 < |a|;

(&) 1(8,0) = 51(8).
Now fix a one-to-one function j: [A]> — . Given h: [A]**! — A, where n € [1,w),
define J(h): A — X as follows. Choose hg: [A]? — A, ¢ € [1,n + 1], so that

(5) hay1=h;

(6) hpsa(do,-- ., dp) = hp({j(dr, dr+1): k < p});
set J(h) = hy.

Then define F: {(8,a) € A X A\: § < a} — A so that

(7) Fla,a)=a+1;

(8) F(aya+1)=0;

(9) F(a,a+2) = J(gi)(y) whenever a = j(i,i + 1+ v) and i < 2;
(10) F(a,a+2) = J(fn+1)(7y) whenever a = j(n+1,n+2+ ) and n € {1,w);
(11) F(a,6 +2) = j(a,6) whenever a < §.
Let a € [\]<* — {0} be such that F(8,a) € a for all 8,a € a with # < a. Then
frt1[[@]®t!] C a for all n € [1,w), and g;[[a]?] C a for all i < 2. Moreover, if v is
the least infinite cardinal < k with aNv # v, then v is a successor and aNv € v.
Also note that if p is an uncountable cardinal < & with o.t. (a N p*) > p, then
lanp|=p.

Let us finally assume that for every successor cardinal v € U(ank), there exists
n < w such that v*" € U(aNk) and |aNv+?| = v*". Then aNk € &. It is easily
verified that a = U{aq: d € [a]<“ — {0}}. As D is closed under directed unions
of size < k, we have a € D. |

Let ¢(z,po,...,px) be a formula of set theory with parameters po,...,px. We
let 7, A(¢(2, po, .-, Px)) mean that given D € NS}, ,, there exists F: AU[A]? —
with the property that a € D for all a € [\]<* — {0} such that FlaU[a]*] C a
and ¢(a, po, ..., pk). By Proposition 3.1, we have the following :

(i) mea(z = z) for k = wy.

(ii) mxa(Jz Nwn| = R,) in case n € (0,w) and & = wp41.
(iil) wea({n € w: |2 Nwn| = Rpn} € [w]*) for k& = Ruy1.
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(iv) mea(v € 7) in case k = v¥.
Given an infinite cardinal v, we say that there is a Jonsson algebra on v if
there exists g: v X v — v such that g[b x b] — b # 0 for all b € [v]* — {v}. See [4]

and [3] for more on Jonsson algebras.

PROPOSITION 3.2: Assume that k = v, and that there is a Jonsson algebra on
v. Then n.\(|z N v| = v) holds.

Proof: Choose g: v X v — v such that g[b x b] — b # 0 for every b € [v]" — {v}.
Fix D € NS} ,, and let j be as in the proof of Proposition 3.1. Now define
F: {(B,a) € A x X B < a} — ) so that F satisfies conditions (7)-(10) of
Proposition 3.1, and moreover for every m € w and every limit ordinal §,

(i) F(a,6 +3™*) = j(a,6 +m)in case § + m > a;

(it) F(a,6+5™!) = g(a,§ + m)in case § + m € [a,v);

(iii) F(a,6 4 7*1) = g(§ + m,a) in case § + m € (o, v).
Then proceed as in the proof of Proposition 3.1, and observe the following. If
a € [M\]<* is such that |a N v| = v, and that F(B,a) € a for all B,a € a with
B < a,thenv Ca. 1

See Proposition 4.3 for a partial converse to Proposition 3.2.

Let u < X be a cardinal, and let F: u x A = A. We let CF . denote the set of
all a € [\]<* such that aN « € k and F[(aNu) x a] C a. For every b € [A]<*, we
set e(F,b,k) = |, ¢, bn, where

(0) b = bU F(bN ) x 8]

(1) bap41r = bap U F[(bap N 1) X bay);

(2) bapt2 = bapt1 U U(b2p41 N ).

Clearly, e(F,b,k) = N{a € Crx: b C a}.

PROPOSITION 3.3: Assume A > . Then there is D € NS , such that for every
regular cardinal p < A and every F: p x A = X, Cp,x — D is unbounded in [A]<*.

Proof: Choose a one-to-one function j: [A]> — A, and let D be the set of all
a € [M]<* such that j[[a]?] = aNran(j). Let F: p x A — A be given, where p is a
regular cardinal < ), and fix d € [A]<*. Set v = k U p. Choose S € [v+]** such
that e(F,dU {a},v)Nv = e(F,dU{8},v)Nv forall a,f € S. Pick X € [S]* and
Y0 € S — Uaex e(F,dU {a},v). Then find y1 € X ~ e(F,dU {7},v). For each

i < 2, set z; = U, 27, Where

(0) z5 =dU{n}UF{(dnu)x (dU{rn}];
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(1) i =P VU= Nk);

(2) 22 = 2P u (@ ),

(3) 23P*° = S U F[eI 0 ) x P77
Clearly v; € z; — z,_;. Moreover g N g = 21 N u. Finally set z; = z¢ U z;.
Observe that for all m < 3, d C z,, and z;m € CF,c. It is not difficult to verify
that {zo,z1,22} — D #0. |

Let ¢(«, A) be the smallest cardinality of any closed unbounded subset of [A]<*.
We of course have s(x,)) < ¢(s,1) < A<®. The following is a special case of
Proposition 1.8 of [17].

PROPOSITION 3.4: Let u € [k,)] be a cardinal, let F: A x A — ), and set
D={bNpy: b€ Cry}. Then D is a closed unbounded subset of [u]<*.

Proof: 1t is easily verified that D = {a € [u]<*: e(F,a,£) N p = a}. Now D
is unbounded in [u]<*, since for every a € [u]<*, e(F,a,k) N g € D. Then let
aq € D, a < 7 < &, be such that ag C a, for # < a. We have ¢(F, Ua<,1 QoK) =

Ua<~ é(F, @a, ), and consequently |J, ., ¢« € D. 1

aly

COROLLARY 3.5: ¢(,p) < ¢(«, ) for each cardinal p € [k, \].
The following is a slight improvement upon Theorem 1.1 of [2].

PROPOSITION 3.6: Let n < w, and let u; € [, )], i < n, be a strictly decreasing
sequence of regular cardinals. For each i, let S; C {a: cof(a) < £} be a stationary
subset of u;, and let X; € [(x, A]]<* consist of cardinals of cofinality > x. Assume
that Xo C (po,A] and that Xj41 C (pj41,4;). ThenT € NS:"\, where T is the
set of all a € [A]<* such that for each i < n, U(a N p;) € S; and for all v € X;,
cof(U(a N v)) = cof (U(a N g;)).

Proof: Wlog assume that u, = «. Fix F: A x A — A. Define for each i,
af € A<M, a < pi, a; € pi and ;i X; U {pi} — [a]<* so that

(0) o.t. pi(v) = cof(U(a N1v));

(1) Upi(v) = U(a{* Nv);

(2) @) = Ujc;iran(p;) U U;cr Xi U {pe}s

(3) af =Up<a a? whenever a > 0 is a limit ordinal ;

(4) af*! = af UF[af x afJUU(af N pi) U{(U(ef N¥)) + 1w € Xi U {ui}};

(58) «; is a limit ordinal;

(6) U(a Npi) € Si.
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It is easily checked that a3» € TN Cr,x. |
The following should be compared with Corollary 2.4 of [2].

PROPOSITION 3.7: Let n < w, and let u; € [x,A], ¢ < n + 1, be a strictly

decreasing sequence of regular cardinals. Fix ¢ € n+ 1, and for each i # ¢, let
S; C {a: cof(a) < k} be a stationary subset of u;. Put

Y={ae<:Vi#qU(an)€ S:}.
Then |{a € Y N D: cof(U(a N g)) = w}| > py® for every D € NS}, ;.

Proof: Wlog assume that pip41 = &. Fix F: A x A = A. Use Proposition 3.6 to
find A € [/\]<“: with the following properties : F[Ax A] C A, Anu} € pf —p,,
and for every i < g, U(ANpy;) € S;. For each i < ¢, choose z; € [A]<* with
Uz; = U(AN ;). Then set z = ;¢ 2i. Put T = {a € (pg+1,44): cof(a) = w}.
For every a € T, inductively define 8 € S;, ¢ <t < n+ 1, so that

(0) BY > pj+1 whenever j <n+1;

(1) pine(F,zUran(@) U U, < ran(ﬂ;‘?‘), pi) = BE.

Choose Bi, ¢ < ¢ < n+ 1, and a stationary subset Ty of T such that 3 = §;
whenever a € Tpand ¢<i<n+1. Set u=2UPfr41 U Uq<i<n+l ran(f;).

By induction on the domain of f, we define a stationary subset Ts of Tp and
7¢ € gy f € Umew#rT!, as follows. Let g € ug* be given. By induction on
8 < pq, construct ns and Y5 so that

(2) Y; is a stationary subset of T;

(3) ns € Naey, ran(@);

(4) s > U(e(F,uU {7gp: 1 <p < m},6) Npg);

(5) &' < 6 implies ng < ns.
For each § < pug with cof(§) > «, pick (s < § and a stationary subset W of
Y; such that for every o € Ws, {ne: (s < £ < 8} Ne(F,u Uran(a),x) = 0.
Select ¢ and a stationary B C {6 € ({,pq): cof(§) > &} such that {5 = ( for
all § € B. Finally let &, £ < pq, be the increasing enumeration of B, and set
Tou(im0y = Wi, and Ygu((m,0)) = s

For each f € uj, set z5 = e(F,uU {yfm: 0 < m < w}, k). Clearly,

e(F,uU {yfjm: 0 <m < p},k) C n e(F,uUran(a),«x) foreveryp>1.
a€Tyy,

Consequently o7 € Y. Also, 5 € Cr,x and U(z7 N gtg) = Upcmew Vsim- Now let
f, 9 € uy and m € w be such that fjm = gjm and f(m) < g(m). Then Yfjm41 €
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UaET,;, e(F,u Uran(a),«) for all p > m, and consequently vfjm+1 € =5 — z,.
|

The following is due to Baumgartner [2].
COROLLARY 3.8: Assume A > k. Then ¢(x,)) > A¥e.

Proof: If k% > ), then the result follows from Proposition 3.7, as A¥o = x¥o,
Otherwise, we have u(w;, k) < A and by Proposition 2.3, u(w;,A) = ARe. Then
ARe < y(k,)), as by Proposition 2.5, u{w1, A) < u(wi, k) - u(k, A). |

By a result of Magidor [13], if there is no wy-Erdés cardinal in the core model
K, then c¢(k,A) = A in case cof(A) > &, and c¢(k,)) = At - A®e otherwise.
On the other hand, Baumgartner [2] showed that it is consistent relative to the
existence of an w;-Erdés cardinal, that c(wz,ws) = R}* and R}° < RY*. Magidor
[13] also showed the following. Assume either that there is no inner model with a
measurable cardinal, and that A < R,,,, or else that there is no wy -Erdos cardinal
in K. Then ¢(k,A) < AM in case cof()) > x, and ¢(k,A) < At - A%t otherwise.

4. Small stationary sets

We define Cx C [A]<* by letting a € Cx» if 0 € aNk € & and for all a € q,
a+l€aandaNa=aéafan]af.
It is easily seen that Cx,x € NS} ). Ci, has the following interesting property.

PROPOSITION 4.1: Let u € [k, A] be a cardinal, and let a, d € Cy » withaNp #
dny. Then (yCandnu:Va € (aUd)Nupbn(a,x-la|t)#0} =0.

Proof: Let a € Cy,x and b C a N u be given such that b N (a, & - [af*) # 0 for
all € aNp. Given 8 < u, define By, n < w, as follows. Set Gy = B. Let
Bnt1 =0 in case B, < aNk, and let fpt1 = A in case (Bn, 5 |Bn|t) Na =0. If
(B, |Ba|t) N (@ — k) # 0, put Bny1 = @7(Br), where a is least in b — (B + 1).
Then it is easily seen that S € a iff §, = 0 for some n. 1

COROLLARY 4.2: s(,x1%) < (x+%)1®l for all § € x — {0}.

Proof: By Proposition 2.1 and Proposition 2.5, s(k,x*") = «*" for all n €
w. Now let § € k£ —w, and let S be the set of all @ € Oy ,+s such that
cof(U(a N k*B+1)) = w for all § < 6. Then § € NST ., and || < (o)L,
|
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We now briefly return to the problem of finding a more economical character-
ization of members of the closed unbounded filter.

PROPOSITION 4.3: Assume that A < k*¥, that k = v*, and that 7, \(|zNv| = v)
holds. Then there is a Jonsson algebra on v.

Proof: By the assumption, there is F: A U [A]2 — X such that a € Cj for
all a € [A]<* with FlaU{g]?] C ¢ and ja N v| = v. Now pick b € [A]<" so that
vUF[bU[b)?] C b, and cof(U(})) = w for every cardinal u € [k, A]. Define h: w — b
so that U(ran(h) N g) = U(b N p) for every p € [k, A]. Then let g: 5x b — b be
such that

0) g(aya) = +1;

(1) g{a+1,a)=0;

(2) 9(B +2,a) = B~ () whenever 8 > a > w;

(3) g(n+3,0) = h(n) for n € w;

(4) gla+2,0) = F(a)

(5) 9(8,0) = F({B,a}) for f < .

Now let a € [b]* be such that gla X a] C a.

We claim that |a N v| = v. The claim is immediate in case v = w, as w C a.
Thus assume v > w. It is clearly enough to show that |a N x| = v whenever y is
a cardinal such that g > v and ja N (g% — p)] = v. Let such a p be given. Let
us first assume that o.t. (a N (ut — i) > v. Let B € an (ut — p) be such that
ot. (aNB) =v. Then clearly f~![(an B) —w] € [aN u]*. Now consider the
case when o.t. (aN(u* —u)) = v. Then v is a limit cardinal (of cofinality w), as
U(anpt) = U(bNpt). Moreover, by the same argument as above, we have that
lan u| = p for every cardinal p < v. Hence |a N pu| = v.

It easily follows from the claim that a = b. Finally define k: v x v — v by
letting k(a, 8) = b~2(g(B(a), b(B))). 1t is easily verified that k[a x a] — a # 0 for
all a € [v]" — {v}. 1

PROPOSITION 4.4: Let n < w, let ¢ € n+ 1, and for each i # ¢, let S; C
{a: cof(a) < K} be a stationary subset of xt("+1=9). Put

Y ={ae[xtH<R Vi £ qu(ankt™H-D) € 5]

Let D € NS* (.41, and set Z = {a € Y N D: cof(U(a N sH("¥1-9))) = u}.
Then there are 25 € Z, f € (k¥("+1=9)%_ such that for all f, f' € (kT (r+1-0)w
with f# f', 25 —zp #0and zp — x5 #0.
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Proof: Pick F: x¥("+1) 5 x+(n4+1) , +(n+1) with Cpx € DN C, c4n4n). Let
To, v and f;, ¢ < i <n+ 1, be as in the proof of Proposition 3.7. Define d;, 1 €
(g,n+1], by letting dnt1 = PBn41 and forall j € (¢,n+1),dj = Uae“n(ﬂ;) ald;qq].
Now for all f € Upeo(6T("+!1=9)™, define a stationary subset Ty of Tp and
vy € kH(+1-9) a5 follows. Let g € (s+("+1-0)™ be given. Select 75 and Y5,
§ < kT("+1-9) 5o that

(i) conditions (2)—(5) of the proof of Proposition 3.7 are satisfied;

(i) ns > Kj—(n—-q);

(iii) o.t. s[dg41] = o.t. 73 [dg41] for all §, &' < xH(n+1-0),
Then set Tyu((m,s)} = Ys and vyu{(m,8)} = 76-

Finally for each f € (kt("*1=9) set 75 = e(F,u U {yfjm: 0 < m < w}, k).
Eachz; € ZNC, c4n41). Now let f, g € (kT(**+1-0) and m € w be such that
flm = g|m and f(m) # g(m). Then 25 NYfjm = TN Yfm, DUt Yfim41 € T~
and Ygim+1 € Tg — Tf, 35 0.t (Z5 N Yfjme1) = 0t (Zg N Ygim+1)- 1

Let A be a set of ordinals, and let p be a cardinal with o.t. A > p. A is said
to be p-closed if Ud € A for all d C A with o.t. d = p.

Let Ry x be the set of those a € [A]<* that satisfy the following conditions:

(0) a+1€aiff a€a;

(1) ank € &;

(2) given a limit a € a, &(B) € a iff B € a, and for every v € a, U(yNran(&)) €

a.
Ry x € NSy \. Moreover the following holds.

PROPOSITION 4.5: Let u € [k, )] be a cardinal, let a € Ry and let p € |w, k)
be a regular cardinal such that p # cof(U(a N (v N u))) for every regular cardinal
v € [k, p*). Then aNp is p-closed.

Proof: Let d C a Ny be such that o.t. d = p. We have Ud < U(a N p), as
cof(U(a N p)) # p. Set & = N(a — Ud). Then « is a limit ordinal. It is readily
verified that Ud = Uge,ncof(a) #(B). We cannot have cof(a) > aNk, as this would
yield cof(U(a N (x - cof(a))) = p. Thus a N cof(a) = cof(a), and consequently
Ud = a. |

The following is due to Baumgartner [2].
COROLLARY 4.6: c(k,st") < ¥ . £*" for alln < w.

Proof: By Proposition 4.1 and Proposition 4.5. |
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We will devote the remainder of the section to a generalization of Lemma 3.6
of [2].

Let n € w, and let u € [k (") )] be a cardinal. Also let p;, i < n + 1, be
a strictly decreasing sequence of regular cardinals < . For every a € [\]<*, we
define the two-person game G(a) as follows. Each player makes n + 1 moves. I
(respectively II) produces y; (resp. 2;), ¢ < n, such that

(0) yo C aNpandyjq1 Cz;

(1) zi Cy;

(2) o.t. yi =o.t. z; = p;;

(8) N(a —Uud) € yy for every d C yo with o.t. d = ppy1;

(4) N(z; — Ud) € yj41 for every d C yj41 with o.t. d = ppy1.

IT wins iff z,, is pp41-closed.

PROPOSITION 4.7: Let a € R with cof(U(a N 1)) # po and pg C a Nk,
and assume that II has no winning strategy in G(a). Then there is a strictly
decreasing sequence v;, i < n+1, of regular cardinals such that vo41 > &, vy <
and for all i, cof(U(a N v;)) = p;.

Proof: Assume that the conclusion of the proposition fails. We will define a
winning strategy 7 for II in G(a). Consider a run of the game where I plays y;,
t < n. Inductively define d;, «;, ¢; and ¢;, ¢ < n, so that

(0) do = yo;

(1) ai =N(a — Udy);

(2) ¢i C cof(e;) and o.t. ¢; = p;;

(3) i is a strictly increasing function from ¢; to d; such that for every v € c;,

i(7) = 0(di — &(y)) and &(y) = N(ran(&) — Use ne, (9i(8) +1));

(4) 7(yo, ., i) = polea...[wilci]]...)ls

(5) dj+1 C ¢j, and yj+1 = wolpr[-.-[p;[djsa]]--]]-
Finally let ¢ C 7(yo,...,¥n) With o.t. e = pnp1. Let u be such that e =
@ole1]...[pn[u]]...]]. Then Uu € a, and consequently Ue € a, as

Ue = do(o?l((a”,.(Uu))))

It is now easy to check that Ue € 7(yo, ..., yn)- ]

Inductively define the (py, ..., pi)-filter on a limit ordinal a with cof(a) > po as

follows :



16 H.-D. DONDER AND P. MATET Isr. J. Math.

(0) A C a lies in the (po)-filter on a iff A contains a set B such that B is
po-closed and unbounded in ¢;

(1) A C a lies in the (py, ..., pj+1)-filter on a iff { < a: AN S lies in the
(p1, .-y pj+1)-filter on B} lies in the (po)-filter on a.
We leave it to the reader to verify that the (po, ..., p;)-filter on « is a p}-
complete filter, and that each of its members is cofinal in a.

PROPOSITION 4.8: Let a € [\]<* with cof(U(a N g)) > po, and assume II has a
winning strategy in G(a). Then a N p lies in the (po, ..., pn+1)-filter on U(a N p).

Proof: Let A be the set of all § < U(a N x) such that there is d C a with
o.t. d = pp and Ud = B. It is not difficult to show that A lies in the (p1, ..., pn41)-
filter on U(a N p). |

5. U}

Let h: A = [A]<%, and let ¥ < & be an infinite cardinal. We let U} denote the
set of all a € [A]<* such that there exists d € [a]” with a = |J ¢, k().

Notice that if h(a) = {a}, then a € Ulzl for all infinite a € [A]<*. If A =«
and h(a) = a, then a € U cof';a) for every limit ordinal a € (0, ).

Set B(x,A) = {a € [A\]<*: Ua € A} and

UB(x,\) = {E C B(x,)): B(x,\) = | ] P(a)}.
a€E
Using the results of Section 2, it is easy to see that |E| = A for some E €
UB(k, A) iff u(k, ) < A for every cardinal u € [, A).

PROPOSITION 5.1: Assume that ran(h) € UB(x,)). Then U tAU ’;' € NSk
for every h': A — [A\]<* with ran(h') € UB(x, \).
Proof: Let F: A — A be such that h(a) C A'(F(a)). Then
h . 3
{a€U : Flaju Uh(ﬂ)ga}gU .
v B€a v

Let us observe the following. For each a € U t, pick d, € [a]” with a =
Uaed, Ma). Put S ={a € U:: Ud, < Ua}. Then S € NSy, since otherwise
there would exist §' € P(S)N NS:,A and @ € X such that US' C U, h(B),
which cannot be, as [{Ug<q h(8)| < A
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PROPOSITION 5.2: {a € U:|a| > [an&|} € NS,
Proof: {a € [\]<*:Va € a|h(a)| < |aNk|} € NS; ,. |

PROPOSITION 5.3: Let u € [k,\] be a cardinal with cof(u) > «. Then
{a € UL cof(U(an p)) > v} € NS

Proof: {a € [N<*:Ya €aU(h{a)Ny) <U(anpu)} € NSy ,. |
PROPOSITION 5.4: Assume that ran(h) € UB(k, ), and that cof()) € (v, k).
Let n € w, and let y; € [s, )], 1 < n, be a strictly decreasing sequence of regular
cardinals. For each i < n, let S; € NS} with S; C {a: cof(a) < v}. Then
TnU" ¢ NS:,A, where T = {a € \]<": Vi <nU(aNy;) € Si}.

Proof: Fix D € NSy ). Choose F: A x A — X such that
Crx C{a€Dia= | ha)}.

a€a
We define g: [\]<“ — Cp,x NU " as follows. Given ¢ € [A]<, let am, bm, cm and
dm, m < w, be such that:
() 0 = cU»UUsc, 9(d)
(i) am = cm U Flem X cm);
(iil) b = U(am NK);
(iv) ldm| £ v and am Ubm C U,ea,, h(a);
(v) em+1 = dm Ul eq,, Ale)-
Then set g(c) = Unew
Now define by induction a; € S;, ¢ < n, so that g(c) N y; C a; for all ¢ €
[a; U ;i ran(d;)]<¥. Finally set a = U{g(c): ¢ € [U;<n ran(d;)]<“}. Clearly
a€CrxN Uﬁ. Moreover U(a N i) = o for all ¢ < n. 1

am.

PROPOSITION 5.5: Assume that ran(h) € UB(k, ), and let S € NSI,\, where
p € (w, k] is a cardinal such that cof(\) & (u, k). Set
D={ae[A\*:aC U h(a)} and T= {U h(a): a € SND}.

a€a a€a
Then T € NS},.
Proof: Left to the reader. |

It is easy to see that Proposition 5.4 can be derived from Proposition 5.5,
Proposition 3.6 and the following observation. Let 7 € [, A] be a cardinal with
cof(n) > &. Then {a € [A]<*: U(aNn) =U((Uqeq, H(a)) N 1)} € NS} 5.
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PROPOSITION 5.6: Assume A = x+° where |6| < v, and let S be the set of all
a € [A]<* such that for every regular cardinal p € [k, A}, cof(U(aNp)) < v. Then
SAU" € NSy, for some h: X — [A]<*.

Proof: Let g: [\]<¥ — [A\]<* be as follows:
() g({a}) =afor all a € &;
(ii) let n € w —1, and let a, € A, p < n, be such that ap € «x and for all j < n,
a; < |ajt1|.- Then g({ap: p < n}) = dynf...[d1[ao]]...].
Select a bijection j: [A\]<“ — ), and set h = g o j~!. Then

{a€SNCun: jlla]<“] = a} € U’;.

Finally apply Proposition 5.3 to get U t -5 € NS ]

Let us observe that if A\ = x*® with § < w, and if h: A > [A\]<* is as in the
proof of Proposition 5.6, then ran(h) € UB(k, A).

PROPOSITION 5.7: Let u € (w,k) be a regular cardinal, and let T C {a €
Uwgn<n U:: #UU,eq h(@) € a}. Then there exist pairwise disjoint D, € NSj; ,,
acT.

Proof: For each a € T, select dy C a such that |da| < g and a = | ¢4, h(@).
Now put D, = {b € [a]<#: d, C b}. ]

6. On,)\

For each b € [A]<%, let b: o.t.b — b be the increasing enumeration of b. Given
a € [A\]<* — {0} and an infinite cardinal y < «, let K, , denote the set of all
k € P(a)* such that a = Ua<“ k(a), and that for all a,8 < u with a < 8,
k(o) C k(B). Then let w, u: Koy — £# % P(x)¥’ be defined as follows. We let
Pau(k) = (g,h), where g(a) = o.t.k(a) and h(a, ) = K(B)  [K(e)]

LEMMA 6.1: @, , is one-to-one.

Proof: Fix (g,h) € ran(pa,,). Define r: (o.t.a) x g — P(&), s: (o.t.a) X p —
&£ U {«} and t: o.t.a — p so that

(0) r(v,@) € g(a);

(1) r(0,a) = 0;

(2) (v, a) = Us<, (6, @) whenever v is a limit ordinal with v > 0;

(3) o(7,%) = & in case r(7,a) = g(a);
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(4) s(y,a) =N(g(e) — r(7,a)) in case r(y,a) C g(@);

(8) s(7,t(7)) € h(B,4(n)) for all B < t(y);

(6) s(v,n) € h(t(y),n) for all n > #(v);

(7) r(v+1,a) =r(y,a) for all a < t(y);

(8) r(v+1,a) =r(y,a) U {s(y,a)} for all a > t(v).
Finally define k € K, , by letting k(a) = {a(y): @ > t(y)}. It is easily verified
that {k} = o7 L(g,h). |

PROPOSITION 6.2: Letn € [«, )], v and u € [0, v) be cardinals such that cof(n) >
g, 6 =v%, 2 <A cof(y) = pp and v* = v. Then

{a € [A\]<*: cof(U(aNn)) = u} € ND:"'\.

Proof: Select a bijection j: []<* — 2”. Given a € [A]<*, we define w, C P(a)
by letting b € w, iff there exist k € K, , and m: g — a N 2" such that, setting
(9, h) = @a,u(k), we have

(0) ran(g) Can«;

(1) jlran(h)] € an2";

(2) b=Upe, @ (m(a)) No.t.k(a)]
Now fix A C A and F: A x A — A. Define k: g — [A]<* so that

(i) o.t.k(a) € k(a +1);

(i) j(k(B)  [k(e)]) € k(8 + 1) whenever a < B;

(iii) j(K(a) [AN k(a)]) € k(a+1);

(iv) k(o) € K(ar+1);

(v) k(B) = Ua<p k(a) whenever B is a limit ordinal with 8 > 0;

(vi) (U(k(a)Nn))+1 € k(a+1);
(vii) k(a) € Crx.
Finally set @ = |, ., k(a). Then a € Cr, cof(U(a N 7)) = p and ANa € w,.
[

7. O« via Cohen forcing

Given § C [A]<* and a cardinal p € [, A] with cof (u) > &, O 4 A(S) asserts
the existence of a sequence s, € | geon P(B), @ < p, such that

{a € S: Suang) Na = ANa} ENS;",,\ forall AC A,

Such a sequence will be called a {; 4. A(S)-sequence.
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Clearly Og: 4: A(S) implies ¢ A(S). Also notice that . «: x(S) is equivalent
to Ox(S N k).

Just as ¢, A(S) (see [14]), Ox: u: A(S) can be reformulated in terms of parti-
tions.

PROPOSITION 7.1: The following are equivalent :
(1) Ox: u: A(S) holds.
(ii) There exists H € P(u)* such that {a € S: U(aNp) € N eq p(@)} € NS:",\
for every ¢ € [[ < {H(a), s — H(a)}.

Proof: (i)—(ii): Given sq € Ugeo, P(B), @ < p, define H € P(p)* by letting
H(B) = {a < p: p € sq}.
(ii)—(i): Given H € P(u)*, set so = {f < X a € H(B)} for all a < p. |

COROLLARY 7.2: Assume {; u: A(S) holds for some S € NS:"A. Then 2# > A
and 2<* < pu.

Proof: Let H € P(u)* be as in the statement of Proposition 7.1, and let v €
(0,) be a cardinal. Then [ ¢, ¢(a) # 0 for all ¢ € [, {H(a),p — H(a)}.
Hence 2¥ < u. We leave it to the reader to verify that 2* > A. |

Assume that ) is a strong limit cardinal of cofinality < x, and let S € N S,‘:’ Ae
Then by Corollary 7.2, we have that for every u € [k, ], Ox: u: A(S) does not
hold. Thus our stronger version of diamond is trivially false in that case, so
that our definition seems defective. However as we shall see below (Corollary
10.6), under the same assumptions {, a(S) is trivially true, and thus not very
meaningful either.

Clearly the definition of our principle makes it possible for a given sequence
Say @ < pi, to be a Oy i A([A]<*)-sequence for various «’s or A’s. The following

two propositions illustrate that fact.

PROPOSITION 7.3: Assume Sq, & < 4,15 a QO u: A(S)-sequence, and let v € (g, A]
be a cardinal. Then sq, @ < p, is a Ok: p: w({a N v: a € S})-sequence.

Proof: Left to the reader. 1

PROPOSITION 7.4: Let p € (w,k] be a regular cardinal, and assume that s,,
« < p, is a Qx: u A(S)-sequence, where S C {a € [A]<*: cof(U(a N p)) < p}.
Let T be the set of all b € [A\]<? such that there exists a € S with b C a and
U np)=U(anp). Then sy, a < p, is a Oy u: A(T)-sequence.
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Proof: Left to the reader. [ |

Let us point out that the above result can be somewhat refined (see Proposition
11.4).

Throughout the remainder of this section, M will denote a fixed transitive
model of ZFC, and A will denote an uncountable cardinal of M.

Let us first recall (see [19]) the following fact. Suppose (P, <) is, in M, an
wi-closed notion of forcing, and let G be P-generic over M. Then (N th WM =
(N S:'h WMIEI N M. The following is also well-known.

LEMMA 7.5: In M, assume that ) is regular, let & € [wy, A] be a regular cardinal
and let (P, <) be a A-closed notion of forcing. Let G be P-generic over M. Then
(NSH )M = (NSH )M M,

Proof: Let p € G and F be such that p forces that F' € A***, Now working in
M, construct p, € P and fo € A**%, a < A, so that
(i) po < p;
(ii) B < a implies pa < pg;
(iii) pq forces that Fla x a = f,.
Finally set f = {J, <) fa- Given S € NS::A, pick a € SNCy,  with Ua ¢ a. Then
Pua forces that a € Cp,.. [ |

The following can be found in [15] (see Proposition 3.7 there).

PROPOSITION 7.6: Assume that A is regular in M, and add a Cohen subset of A.
Then in the extension, there is a sequence sq C A, a < A, that is a {y: . A(S)-

sequence for every regular cardinal k € (w,A] and every S € N S':', \NM.

If we restrict our attention to the case k = w;, then Proposition 7.6 can be

generalized as follows.

PROPOSITION 7.7: In M, let p, u be uncountable cardinals such that p is regular,
cof(p) > p, p < X and p, A & (p,2<*]. Let G be Fn(X x ,2, p)-generic over M.
Then in M[G], there is a sequence 3o C A, a < p, that is a Qu,: p: v(S)-sequence
for every cardinal v € [, A] and every S € NS} , N M.

We omit the proof of Proposition 7.7, as it is very similar to the proof of the

following.
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PROPOSITION 7.8: Let u be a regular uncountable cardinal in M such that A 2 p
and A ¢ (p,2<*), and let G be Fn(w X p,2, u)-generic over M. Then in M[G],
there are sq C w, a < p, such that &[sy(any)), @ € [A]<“*, is a Qu,,A(S)-sequence
for every S € NS: A NnM.

1

Proof: Set sy = {n € w: (UG)(n,a) =1}foralla < y,andfix S € NS:I,AOM.
Let p € G and B, F in M[G] be such that p forces that B € 2* and that F € AA*},
We will now work in M. Let p,, ¥ < 2<#, be a one-to-one enumeration of the
set of all p’ < p. Let D denote the collection of all z € [A -2<#]<“! such that for
every 4 € N 2<# the following two conditions hold :
(0) Given 2: 2 > zNXand n € zN A, thereare § € zN2<K, £ € 2N A and
m < 2 such that ps; < p,, and p; forces that F(2(0),2(1)) = £ and that
B(n) =m.
(1) Given (n,B) € dom(p,), B < U(z N ).
It is not difficult to see that D is a closed unbounded subset of [A-2<#]<«“1. Now
pick € Dsuchthat w Cz,zNA € Sand Uz Nyu) & z. Let z,, n € w,
enumerate (z N A)?. For each n € w, define v, € zN2<#, {, € zN X and m, < 2
so that
(0) Pryoss < Py o
(1) ps, forces that F(zn(0), 24(1)) = £n and that B(z N A(n)) = mq.
Finally set ¢ = (U,co Pra) Y {((n,U(z N p)),mp): n € w}. Then g forces that
Flz ) x (z N A)] € 2N A and that 7 N Afsugeng] = {@ € 2N A Bla) = 1}.
i

Let us point out that if x > w;, then both Proposition 7.7 and Proposition
7.8 can be partially generalized using the methods of Section 14. To give an
example, assume that in M, 2%t = Ry, and add a Cohen subset of w;. Then in

the extension, there are sq C w1, a < wy, such that G[sy(anw,)), @ € [ws]<“2,

is & Qu,wy(S)-sequence for all § € (NSF, , )M with § C {a: cof(Ua) # w; or
cof(U(a Nwy)) # w}.

8. 0%

Let p > 1 be a cardinal, and let § C [A\]<*. We say that t, C P(a), a € [\]<*,isa
0% A(S)-sequence if for every E € [P(A)]<*, the set {a € §: 1, = {ANa: A € E}}
is stationary in [A]<*. The principle ¢} ,(S) asserts the existence of such a

sequence.
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We let ND? , denote the set of all § C [A]<" such that ¢f ,(S) does not hold.
Notice that ND% , C ND,’::)‘ whenever p' > p. Also, ND2 | = NDy 5.
We observe that NDf, , is an ideal over [\]<* extending NS ».

PROPOSITION 8.1: Assume either that p is a successor, or else that cof(p) > A.
Then NDZ’,\ is a normal ideal.

Proof: Let Q4 € ND:X, a < A For each a < A, let W, be the set of those
a € [A]<" such that @ € a and @ € Qo — Upeana @8- Set W = Uycr Wa. Let
a bijection j: A x A — X and a sequence u, C P(a), a € [A]<*, be given. Put
ta = {{B € a: j(a,p) € d}: d € u,} for all a € W,. For each a < ), select
E, € [P(N)]<P such that {a € W,: t, = {ANa: A € Eq}} € NSc). Put
£ = Uq<x |Eal, and for each a < A, choose F € P(A)* with ran(Fy) = Eq. Set
By = {j(a,B): a < X and B € Fy(7)} for all ¥ < g, and let

S={a€W:u,={anBy: v < pu}}.

Suppose S € NS:',,\. Then one can find @« € X and T € NS:',/\ with
TCSNWan{a € [N<: jlaxa]l =a}. We havet, = {Fa(6)Na: § < p}
for all @ € T, a contradiction. |

An easy modification of the above argument shows that ND? , is v-complete

for every cardinal v < k with cof{p) > v.
This is a generalization of Proposition 1.6 of [15].

PROPOSITION 8.2: Let S C [A|<* with S ¢ ND{, ,. Then there are tF C P(a),
a € [A<* and F € 2*, such that {a € $: Vo € a 7 = {g(a)Na: g€ Q}} €
NS':",\ for all Q@ € [P(A\)*]<* and one-to-one H: A — 2*.

Proof: Let s, C P(a), a € [A]<%, be a {% ,(S)-sequence. Select a bijection
v: A = A X A x A XA For each a € [A]<*, choose ja: 2* — P(P(a)) with the
following property: in case

{vle]: e € sa}
= {{{e,8,7,8) €axaxaxa h(a)(f) =+ and é € w(a)}: we W},

where h: a — 2% is one-to-one and W C P(a)?, then for every a € a, ji(h(a)) =
{w(a):w e W}.

Given a € [\|<* and F € 2*, set tf = j,(Fla). Let @ € [P(\)*]<” and
H: A — 2* be given with H one-to-one. Put

K ={{(a,8,7,6) € A x A x A x X: H(a)(B) =y and § € g(a)}: ¢ € Q}.



24 H.-D. DONDER AND P. MATET Isr. J. Math.

Let D denote the set of all a € [A]<* such that v[a] = a x a X a X a and that the
function h: a — 2¢ defined by h(a) = H(a)|a is one-to-one. Since D is closed
and unbounded, the set T of all a € DN S with s, = {aNv~![4): A € K} is
stationary in [A\]<*. It is readily checked that () - {¢(a)Na: ¢ € @} whenever
acacT. |

COROLLARY 8.3: Given § € P([A]<")~ND 2,» there are pairwise disjoint T, ¢
ND:‘:,A’ a < A<, with J,cxan Ta = S.

Proof: Let tf ,a € [A\]<* and F € 2*, be as in the statement of Proposition 8.2.
Let G € 2* be fixed. For each d € [A\]<*, set Ty = {a € S: tf = {d}}. Pick a
one-to-one H: A — 2* with H(0) = G. Let d € [\]<* and E € [P())}<* be given.
Choose Q € [P(A\)*<? so that {g(0): ¢ € @} = {d} and {¢(1): ¢ € Q} = E.
Let Y denote the set of all @ € S such that 2U d C a and that for all « € a,
@ = {¢g(a)Na: ¢ € Q}. ThenY is stationary, and Y C {a € Ty: 7O
{ANna: A€ E}}. |

We next show that the truth-value of ¢} ,(S) is the same for all small values
of p, and for all large values of p.

COROLLARY 8.4: ND, s = NDg,.

Proof: Let § € P([\]<*) — NDy. By Proposition 8.2 there are t¥ C g,
a € [\<* and F € 2*, such that {a € S: Va € a t&® = ¢(a) Na} € NS},
for all ¢ € P(A\)* and one-to-one H: A — 2*. Choose such an H, and for each
a € [A]<%, set t, = {t#). o € ). Given E € Uae(o,) PN, let g € P()\)* be
such that ran(q) = ran(E) and g|dom(E) = E. Then {a € S: Va € a tf® =
g(a)na} N {a € [\]<*: dom(E) C a} C {a € S: ta = {E(B)Na: B € dom(E)}}.
| |

ProposiTioN 8.5: ND®)" = NDOS?,

Proof: Let S € NDS‘:;)+. Fix a sequence ¢, C P(a), a € [A\]<*, and pick
E C P(\) such that {a € S:t, = {ANa: A€ E}} € NS, 2. Set

W={beN<"thc{ANnb A€ E}}.
For each b € W, pick Ay € E with A; Nb ¢ t;. Now

{a€S:ts={AsNa:be W}} € NSia.
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Thus S € NDI*. g

The following is easily verified.

PROPOSITION 8.6: Assume [A]<* ¢ N D,(:;) +, where v is an infinite cardinal < k.

Then 22" < \<*.

P . x ot
Thus if & is not a strong limit, we have P([x]<*) = ND§ ..

9. Games

Let n < w, and let g; € (k, ], 1 < n, be a strictly decreasing sequence of regular
cardinals. Set pn41 = &, and for each ¢ <n+1, let S; C {a: cof(a) < k} be a
stationary subset of ;. Fix ¢ € n + 1, and assume that S; C {a: cof(a) = w}.
Let X be the set of all a € [A]<* such that U(a N ;) € S; for all i < n + 1.

We assume the following :

(i) 2<% < pq in case & is either a limit or the successor of a cardinal with
uncountable cofinality;

(ii) v<¥ < pq in case & = vt and cof(v) = w.

Let F' € A**X be given, and let Ty and u be as in the proof of Proposition 3.7.

Define k: p5“ — {0} — [A]<* as follows :

(i) Assume « is either a limit or the successor of a cardinal with uncountable

cofinality. Then k(ao,...,am) = e(F,u U {aq,...,am},&).

(ii) Assume that x = v*, where cof(v) = w, and let cardinals v, < v, m < w,
be such that |J,, <, ¥m = v. Together with k we will define an auxiliary
function h: p<¥ — {0} — [A]<*:

(0) h(ao) = {ao} U U¥(w0l;

(1) k(ao) = h(axo) U F[h(ao) X h(ao)];

(2) h{ao, ..., ms1) = k(atg, e, @m) U {&m41} U & U V[vme];

(3) k(ag,...,am41) = h(ag, ..., am41) U Flh(ag, ..., amt1) X h(ag, ..., m41)]-

Now for every a < K, we let the infinite two-person game G(a) be played
according to the following rules.

A move of Player I consists in selecting § < y4 and ¢ C a. II answers each time
by choosing v < pg. I (respectively II) thus constructs ¢ € pf and x € P(a)
(resp. ¥ € py). I wins iff the following are satisfied :

(*) ¢(m +1) 2 p(m).

(**) There is a strictly increasing bijection jm: x(m) — k(¢(0), ..., p(m)).
(***) jm C jmi1.
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(****) U(u N pi) = Ue(F,u Uran(p),k) Ny for all i < n + 1 with ¢ # q.

Let us observe that e(F,u Uran(p), &) = |, ., K(¢(0), ..., o(m)).

Choose § < « and a stationary subset T of Ty such that for all « € T},
o.t. e(F,uUran(a),x) = 6.

LEMMA 9.1: I has a winning strategy in G(8).

Proof: We will define a winning strategy o for I in G(§). Consider a run of
the game where II plays ¢ € py. For each a € Ti, let @ be the increasing
enumeration of e(F,u Uran(a), ). Inductively define X, S and ¢, m < w,
as follows :
(i) Xo is a stationary subset of Tj;
(i) Bo € Naex, ran(@);
(iii) co = @ {k(Bo)] for all & € X;
(iv) Xm+1 Is a stationary subset of Xp,;
(v) Bt = $(m);
(vi) Bm+1 € Naex,, ran(@);
(vii) eme1 = @ [k(Bo, .-, Bm+1)] for all a € Xypy1.
Then set #(0) = (8o, co) and o($(0), ..., h(m)) = (Bm+1, Cm+1)-
Given a < & and x € P(a)¥, we define a new game G(a,x) as follows. I
(respectively II) constructs ¢ € pg (resp. ¥ € uy), and I wins iff (*), (**), (***)

and (****) are verified.

LEMMA 9.2: There are § < k and £ € P(§) such that I has a winning strategy
in G(§,¢).

Proof: Let é§ be as in the statement of Lemma 9.1, and let ¢ be a winning
strategy for I in G(6). We will define £ € P(6§)“ and a winning strategy o' for I
in G(§,&). Let £(0) = ¢o and o'(0) = fo, where (8o, co) = 0(0). Given vm < g,
m < 7, set Be = {7 < pg: 38 < g o(0y-,7j-1,7) = (B,¢)} for all ¢ C a.
Then pick ¢ with |B.| = pq, and put {(j + 1) = ¢ and ¢'(7,...,7;) = B, where
(B,¢) = 0(Y05%-1,(Be = 75)).

LEMMA 9.3: There are @ < & and x € P(a)” such that |, ., x(m) = a and
has a winning strategy in G(a, x).
Proof: Let 6, € be as in the statement of Lemma 9.2. Put a = o.t.(lJ,, <., £(m)).

Then letting j: @ — |, <, £(m) be the increasing enumeration of | J,, ., £(m),
set x(m) = j~[£(m)] for all m < w. ]
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PROPOSITION 9.4: Assume k =w;. Then |CNX|= A% for every C € NS}, ,.

Proof: By Lemma 9.3, there are « < w; and x € P(a) such that | J,, ., x(m) =
o and I has a winning strategy in G(a,x). It is not difficult to find Q) € ¥
such that I has a winning strategy o in the game G(a, X, @), which is defined
as follows. I (respectively II) builds ¢ € pf (resp. ¢ € u¥). I wins iff (*),
(**), (***), (****) hold, and moreover ju(Q(m)) = ¢(m). Let H: us¥ — p,
be such that H(70,...,Ym) = U(pq N k(c(0),...,0(70, ..., Ym))), and set D = {y <
pg: Hly<¥] C v}. D clearly is a closed unbounded subset of y4. Select ¥ € DNS,.
Let < be the total order on | J,, .., such that
(i) f < g whenever dom(f) < dom(g);
(ii) if f, g € 2™*! and f|m # g|m, then f < g iff glm < fm;
(i) if f € 2™, then fU {(m,0)} < fU {(m,1)} iff m is even.
Now by induction define 85 and ¢, f € J
() fo = o(0);
(b) Bs = o(f1,7f2 -»75) Whenever f # 0;
(c) let f, g be such that ¢ < f and for every h < f, b < g. Then set y¢ = ¥(m)
in case g € 2™ and f € 2™*! and 75 = B, + 1 in case dom(f) = dom(g).
For each h € 2¥, set z(h) = e(F,uU{Bhm: m € w}, k). Clearly z(h) € CrNX.
Also z(h) — z(h') # 0 and z(h') — z(h) # 0 whenever h # h'. Finally observe
that by Proposition 2.3, ARe = 2% . y(wy, A). |

m<w 2™, as follows:

Let p > 1 be a cardinal with 27 < u, for every cardinal n < p. Also let
E € [P(\)]<* be given.

Given a < k , X € P(a) and £ € [[,nc., P(x(m))?, we define a new game
G(a, x,€) as follows. I (respectively II) builds ¢ € pf (resp. ¥ € pg). I wins
iff (*), (**), (***), (****) hold and moreover for all A € E, j,[¢(m)(4)] =
AN k(p(0), ..., 0(m)).

LEMMA 9.5: There are a < &, x € P(a)* and ¢ € [],,<., P(x(m))® such that
Upn<w X(m) = a and I has a winning strategy in G(a, x, £).

Proof: By Lemma 9.3, one can find a, x, o such that J,, ., x(m) = a and ¢
is a winning strategy for I in G(a,x). We will define £ € [],, .., P(x(m))® and
a winning strategy o' for I in G(a, x,£). Let jo: x(0) — k(c(0)) be onto and
strictly increasing, and define £(0) by letting £(0)(4) = j; '[A N k(c(0))). Put
0'(0) = o(0). Given vy < pq, m < j, let for every v < pg, J4: x(7 +1) =
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k(e(0),...,0(70,..-y¥j-1,7)) be onto and strictly increasing. Set
Bi={y<pgsVA€EE J,,_l[A N k(o(0), ...,0(Y0y -y Yi-1,7))] = d(A)}

for all d € P(x(j + 1))®. Then pick d with |Bg| = p,, and put £(j + 1) = d and
o'(70, - 5) = 0(Y050y%-1,M(Ba = 75))- B

Let us now make one further assumption on x. We assume that 2¥ < g, in
case k£ = v* and cof(v) = w.
PROPOSITION 9.6: X ¢ ND7 ,.

Proof: First choose pairwise disjoint Ty C S¢, Y € U, «.[P(@)]<*, so that each
Ty is a stationary subset of y,. Given a € X, let j:: o.t.a — a be the increasing
enumeration of a. If U(a N pg) € Ty for some Y, set t, = {j[yNot.a): y € Y};
otherwise put ¢, = 0. Now let F: A x A — ) and E € [P(\)]<” be given. Let
a, X, ¢ be as in the statement of Lemma 9.5, and let ¢ be a winning strategy for
Iin G(a,x,€). Set Y = {Upcw é(m)(A): A € E}. Let H: p$ — py be such
that H(¥o,...,¥m) = U(pq N k(c(0), ..., (70, ..., Ym))), and set

D={y<pgHr“| S}

Select ¥ € DNTy, and put a = {J,, ., kK(¢(0), ..., (5(0), ..., 5(m))). Theno.t.a =
a and U(a N pg) = v. Moreover a € XN Cr, and t, = {ANa: A € E}. 1

The following corollary states the special case of our result when £ = w; and
A =2Ro,

COROLLARY 9.7: Assume 280 is a regular cardinal with 2% > y, and let S C
{a: cof(a) = w} be a stationary subset of 2%. Then

{a € [2%])<“1: Ua € S} ¢ ND,, sxo.

A simple trick can be used to cover more cases. For example, assuming 2<"v =

Ru+w, We obtain that [Ry4u]<®» @ NDYye o for all n € [1,w). This is how we
do it.

PROPOSITION 9.8: Let p € (k,A] be a cardinal such that 2" < X for every
cardinal n < p. Then [\|<* ¢ ND ,.

Proof: The result is immediate from Proposition 9.6 in case p is a successor.

Thus assume p is a limit, and let po < p, a < cof(p), be a sequence of cardinals
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with Uy <cot(p) Pa = p- Select pairwise disjoint stationary subsets Sq of «- cof(p),
a < cof(p), with each S, C {B: cof(8) < }. For each a < cof(p), let X, be the
set of all a € [A]<* such that cof(U(aN(2%*=)%)) = w and U(aN & cof(p)) € S
By Proposition 9.6 X, ¢ ND£ for all o with (2%7)* # cof(p). It is easily
seen that [, ccorp) Xo € ND{,. 1

10. ON,V,A

Let v be a cardinal with k < v < A. Given § C [A]<*, the principle {x y,1(5)
asserts the existence of a sequence s, C Ua, a € [A]<*, such that for all A C ),
the set {a € S: s, = AN (aUU(aNv))} is stationary in [A]<*. ,

Let ND, ,,» be the set of all S C [A]<* such that {,,,2(S) does not hold.

ND,, , is easily shown to be an ideal. We have that NDy,» C ND, /2
whenever v' > v. Also, ND, = NDy .

The following is easily checked.

PROPOSITION 10.1: (i) If cof(v) > & and [A]<* & N Dy, x, then 2<% < A<k,
(ii) Ifcof(v) < k and [A\]<* & NDy y,», then 2 < A<k,

PROPOSITION 10.2: (i) If cof()) < &, then NDX, € NDj s a.
(i) If cof()) > k, then NDy y C NDy 2.

Proof: Set p = X in case cof(X) > &, and p = AY otherwise. Fix S € ND}, ;.
We will show that there are t, C P(Ua), a € S, such that

{a€S:ta={ANUa: A€ E}} € NS}, forall E € [P(N)]<*.

We will first define a one-to-one function j: Ax A — A. If A is regular or cof(A) <
K, then let j be arbitrary. Now assume & < cof(A) < A. Let p, 7 < cof(A), be a
strictly increasing sequence of infinite cardinals such that A = U,y <cof(2) B and
that for every limit ordinal v € (0,cof(})), py = Us #s- Let jo: po X po — po
be one-to-one, and for every 4 < cof (), let jy41: fhyt1 X fyg1 = fyt1 — iy be
one-to-one. Then set j(a,3) = js(a, B), where § is least with {a, 8} C ps. Let
8¢ C Ua, a € S, be such that {a € S: s, = ANUa} € NS:’)‘ for all A C A
Given a € S, put d® = {8 € Ua: j(a, ) € s,} for all & < A. Then set t, = {0}
in case U,<rds = 0, and ta = {d: U, d? # 0} otherwise. Now let u < p
and E, C A, a < y, be given such that g is an infinite cardinal and for every
o, {# < p: Eq = Eg}| = p. Put A=, ,{i(e,): B € Ea}. Supposea € S
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is such that Ua ¢ @, s, = AN Ua and for every 8 € a, jlu x §] C Ua. Then
to ={EaNa:a<p}. ]

PROPOSITION 10.3: ND,, » = ND x whenever 2<¥ < A.
Proof: Choose bijections j: 2 x A — X and h: 2<¥ — |J, ., P(a). Assume

S C[A]<* and s, C a, a € [\]<*, are such that {a € S:s, = ANa} € N.S':',,\ for
all A C A. For each a, set

ug ={B < X: j(0,8) € 35}, wvs=UR[{y <2<":5(1,7) € sa}],

and finally ¢, = (vs NU(a N v)) Uu,. Now let B C A be given, and define
f: v — 2<% by letting f(a) = "} (BN a). Set

A={j(0,): B € B}uU{j(1, f(a)): @ <w}.

Suppose a € S is such that ANa =3,,2C a, j[2Xx a] =a and flanv] C a.
Then ¢, = BN (aUU(aNv)). ]

COROLLARY 10.4: Assuming the Generalized Continuum Hypothesis, ND, » =
NDeap=ND)Y.

Proof: By Proposition 10.3 and Proposition 10.2. |

PROPOSITION 10.5: Let p > ) be a cardinal, and let S C [A]<* be such that
|D N S| = 2<P for every closed unbounded subset D of [A\]<". Then there exist
ta € P()), a € [\]<*, such that {a € S:t, = E} € NS:',,‘ for all E € [P()\)]<°.

Proof: Fix a bijection j: A<® — [P(A)]<?x A***. Now by induction on o < A<¥,
define aq € S and t,, C P(X) so that

(0) B < « implies ag # aq;

(1) aaNK € K;

(2) if j(a) = (E, F), then Flaq X aq) € aq and t,, = E. |

Notice that given S C [A]<*, § splits into 2* many pairwise disjoint stationary
sets iff there are t, C ), a € [A]<*, such that {a € S: t, = A} € NS:"A for all
AC).

COROLLARY 10.6: Assume X is a strong limit with cof(A) < k. Then NDy x =
NSK’A.

Proof: By Corollary 2.4 and Proposition 10.5. ]
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COROLLARY 10.7: Assume that A € [wq,28) and that 2<2"° = 2% Let b C
[w1, A] be a finite family of regular cardinals, and for each p € b, let S, € NS}
with S, C {o: cof(a) = w}. Then {a € [A\|<“: Vp € bU(aNp) € S,} €
ND®)' - NDZ

wy,A wy,A’

Proof: By Proposition 9.4, Proposition 10.5 and Proposition 8.6. [ |

11. From one diamond sequence to another

PROPOSITION 11.1: Let p > 1 and v > X be cardinals, and let S € P([A]<¥) —
ND; ,. Furtherlet T € NSL’V, and g, € A* and D, € NS} ,, a € T, be such
that each g, is a bijection, and g4[y] = g4[y] whenevera, d € T andy € D, N D;.
Then {y € U,er Da: yNAE€SYENDE .

Proof: Let ty C P(b), b € [A]<*, be a 0% \(S)-sequence. Given a € T and
b € S such that A C a and ¢;'(b] € Dq, set u 1y = {9:'[z]: z € ts}. Now
fix E € [P(v)]<f and Fy: v x v — v. Select a € T N Cp, 2+ such that A C a
and Ua ¢ a. It easily follows from Proposition 1.5 of [16] that there exists
Fy:axa— asuchthat {d € [a]<*:dNk € k and Fi[dx d] C d} C {0}UD,. For
each i < 2, define Gi: A x A — X by letting Gi(a, 8) = ga(Fi(97 (), 9;1(8))).
Then select b € S so that
(i) b€ Cago,x NCay,x;

(i) g7 BINA=1b;

(iii) ¢ = {bNga[ANa]: A € E}.
It is easily checked that g;*[b] € D, N Dp, «, and that

u -y = {4 Ng'B: A€E}). 1

Notice that the results of Section 5 give the following. Let v > A be such that
either v < A**, or u(At,u) < v for every cardinal y € [A\*,v), and cof(v) ¢
[k,A]. Then one can find T € N Sj\;’y such that there exist pairwise disjoint
D, € NS% ,, a € T. On the other hand, the existence of such a T clearly implies
that s(A*,v) < v<*,

PROPOSITION 11.2: Let v > A be a cardinal such that either v = At*, or
v = Uueow) u(A*, ) and cof(v) € [k, A]. Then one can find T € NS;_,V, and
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9o« € \* and D, € NSi ,, a € T, such that each g, is a bijection, and g,[y] = galy)
whenever a, d € T and y € D, N Dy.

Proof: Select a bijection j: cof(v) x A — A. Also choose cardinals v, < v,
a < cof(v), such that

(i) vo =0and vy = A¥;

(i) vo < Vat1;

(iii) va = Ugcq vs Whenever a is an infinite limit ordinal;

(lv) v= Ua<cof(u) Va-
Let Z be the set of all a € [¥]<*" such that [a N [Va,vas1)| = A for every
a < cof(v). We are going to define T C Z, and r: cof (v) x T — [v]<* such that
r(a,a) C a. Suppose that has been done, and let a € T be given. We let D, be the
set of all y € [a]<* such that r(a,a) C yforevery a < cof(v) with yN[vy, Vat1) #
0. We define go: @ — A so that g,(¢) = j(a,(a N [Ve, Vat1)) " (€)) Whenever
£ € aN[Va,Vo+1)- Let us now define T and r. Let us first consider the case when
v = AT*. We let T be the set of all a € Cy,» such that |a 0 [AH7, AT0+1)) = A
and cof(U(a N A*(#1)) < « for every v € k. Clearly T € NS},. For every
a € T, define R,: k — [a]<* so that UR.(y) = U(a N [At7, A1(7+1))). Then set
r(a,a) = U, ¢, Ra(7), where go = {7y < £: A7 < voa}.

Now for the other case. Select h: v — [u]<"+ with ran(h) € UB(A%,v), and fix

a regular cardinal p € [w, k). Let T be the set of all a € Z such that |z, h(8) C
a, and there exists R: cof(v) — [a]* with a Nveqy = User(ay (B) N Vas1. The
definition of r should be clear. It remains to show that T € N SL’V. Thus let
F:vxv — v be given such that { Js¢, h(B) C a whenever A C a and Flaxa] C a.
Define a,, v < g, and 65, v < p and a < cof(v), so that:

(0) a0 = Uaccor(ny{va +(: ¢ <Ak

(1) (ayU Flay x a,}) Nvas1 € R(63);

(2) gy = {5?,: a < cof(v)} U Ua(cof(v) h(‘s-c;) ;

(8) ay = U<, a¢ whenever v is an infinite limit ordinal.
Then set a = |J.,., a4. We have that Fla xa] Ca, A Ca and a € T, as desired.
|

y<n

A modification of the proof of Proposition 11.1 yields the following.

PROPOSITION 11.3: Assume X is a strong limit with cof(\) < . Let § € NSY¥,,
and let T € NS}, with T C {a: cof(a) < x}. Then

{yeP*]<:ynireS and UyeT}eND},, ;.
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Proof: By Corollary 10.6 and Proposition 10.3, there are s, C A, b € [A]<*,
such that {b € S: 5, = A} GNS:AforallAgA. Given a € T and b € S such
that A C a and ran(a&) C &[b], set uspp) = @fss]. Then proceed as in the proof of
Proposition 11.1. |

PROPOSITION 11.4: Let p > 1 be a cardinal, and let u € (x,\] be a regular
cardinal. Let T € P([\]<#) — ND?% ,, and let w, € NS¥,, a € T, be a pairwise
disjoint family. Then |J,erwa ¢ ND; 5.

Proof: Let t, C P(a), a € [A]<¥, be a 0:‘3” (T)-sequence. Select bijections
JPAXAxA o Adand g:2x A — A Given A C Aand f: Ax A — A, set
Gs ={(o, B, f(a,P)): a,f € A} and By = {g(1,j(z)): = € G5}. Let S consist of
all @ € T such that k C a and |{f € a®**: By € t,}| = 1. Givena € S, let f,
be the unique f € a®*® with By € t4, and let v, be the set of all z € w, such
that zN & € k and f,[z x 2] C z. Now pick 2z, € v,, a € S. We will show that
{2s:a € S} ¢ ND{ ,. Foreach a € S, set ya = {4 € t,: ANg[{1} x ] = 0}
and u;, = {{a € 2z.: g(0,a) € A}: A € y,}. Now select F: A x A = X and
E € [P(A)]<*. Put K = {{9(0,a): « € A}: A € E}U {Br}, and choose a € T
such that ¢, = {BNa: B€ K}, Flaxa)]C a, g)2xa)=aqa, jlaxaxa=a
and k C a. Clearly, a € S and f, = Fla x a. Thus 2, € CF,c, and moreover
u;,, ={ANz;: A€ E}. |

Let us observe the following. Suppose there exist pairwise disjoint w, € NS?,,
a€T, whereT € ND:’A. Then A<K = \<%,
The following is the analogue of Proposition 11.4 for the principle ¢« x.

PROPOSITION 11.5: Let u € (k,A] be a regular cardinal, let T € ND;:,\,,\, and
let w, € NS',"",G, a € T, be a pairwise disjoint family. Then |J,cwa € ND:,,\,A-

Proof: Left to the reader. [ |

12. O,

Let p > 1 be a cardinal. Given S C [A]<*, the principle 0;’(S) asserts the
existence of a sequence w, € [P(P(a)))5!%l, a € [A\]<*, such that for all E €
[PA)<t,{a€ S: {ANa: A€ E} ¢ w,} € NSk .

We let D;”\ be the set of all S C [A]<* such that ¢;*,(S) holds.

Notice that D’ ' C D’ whenever p' > p. Also, D%, = D, ;.
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PrOPOSITION 12.1: D:"")‘ is a normal ideal over {A\]<* extending NS x.

Proof: Assume S, € D}%,, @ < A. Foreach o, let wg € [P(P(a)))5lel, a € [M]<%,
be such that for all E € [P(A)]<?, {a € S: {ANa: A€ E} ¢ w2} € NS, x. Set
wg = wg whenever a, a are such that a € a and a € So ~ Ugeyns Sp- Now
fix E € [P())]<?. For each a < A, pick a closed unbounded subset Cy of [A]<*
such that Co N Sq € {a: {ANa: A € E} € w?}. Suppose a # 0 is such that
a€ DycxCyanda€J,e, Sa- Then {ANa: A € E} € w,. [

aca
An easy modification of the proof of Proposition 8.2 yields the following.
PROPOSITION 12.2: Let S € D:f)«' Then there arew! € [P(P(a)))$1%l, a € [A]<*

and F € 2*, such that {a € S:Va € a {gla)Na: ¢ € Q} ¢ w ¥} ¢ NSy for
all Q € [P(M\)*]<* and one-to-one H: A — 2>,

PRroPOSITION 12.3: Dy ) = D%,

Proof: Let S € D} ,, and let r, € P(a)?, a € [A]<*, be such that
{a€S:ANagran(r,)} € NScn forall AC A

Fix a bijection j: £k x A — ), and denote by D the set of all a € [A\]<* with
j[(ank) x a] = a. For each a, define w,: a — P(P(a)) by letting w,(a) = {{Bf €
a: j(6,8) € ra(a)}: 6 € ank}. Let G € P(A)” be given, where v is a cardinal with
0 < v < &. Let A denote the set of all j(4, B), where either § < v and S € G(6),
orelse v < § < k and B € G(0). Suppose a, a are such that « € a € SN D,
v Caand r,(a@) = ANa. Then wy(a) ={G(§)Na: § < v}. 1
PROPOSITION 12.4: DJ2)" = pi3*)*,

Proof: Suppose S C [A]<* is such that S ¢ D:fix)n and let a sequence w2 C
P(a), a € a € [A]<*, be given. Select E C P()) such that

{aeS:Vaeca{ANa: A€ E}#wi} e NST,.

Let P be the collection of all (a, a) such that a € a € [\]<* and w? C {ANa: 4 €
E}. Given (a,a) € P, choose A; o € E with A, o Na & w?. Then

{aES:{Aa,aﬂa:(a,a)EP}#“’:}GNS:A' .
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PROPOSITION 12.5: Let v be a limit cardinal with cof(v) < A. Then Dy, =
No<v D

Proof: Choose cardinals pq € (0,v), & < cof(v), such that v = Uy or(y) Koo
and fix § € Nyccot(y) Puix- For each a < cof(v), let wg € [P(P(a))]=lel,
a € [A]<%, be such that {a € S: {ANa: A € E} ¢ wl} € NS, for all
E € [P(\)]<Fe. Set wy = J g, wd for every a € [A]<*. It is easy to see that
{ea€S:{ANa: A€ E} ¢ ws} € NSy for all E € [P(A)]<*. Hence S € D}%.
1

PROPOSITION 12.6: Assume either that p is a successor, or else that cof(p) > .
Then D, \ND’ , = NSy .

Proof: Let S C [A]<* and ws: @ — P(P(a)), a € [A]<*, be given such that
{a € S:{ANa: A € E} € ran(wa)} € NS:"\ for all E € [P(A\)]<*. Fix a bijection
J:AX X — )\ and set C = {a € [\]<*: j[a X a] = a}. Given a < A and a € [\]<*
with a € a, set t = {{B € a: j(a,B) € d}: d € w,(a)}. Suppose that for every
a < ), there exist E, € [P()\)]<? and a closed unbounded subset D, of [A]<*
such that tJ # {ANa: A € E,} whenever a € a € Dy. Put g =J, <y |Eal, and
for each a < A, choose Fy € P(A)* with ran(F,) = Eo. Then define F € P(A\)*
by setting F(y) = {j{a,8): B € Fa(7)}. It iseasy to find T C SN C N ApcrDa
with T € NS}, and a < A such that {F(y) Na: v < p} = w,(a) whenever
a € a € T, which yields a contradiction. ]

This is a version for two cardinals of a well-known result of Gregory and Shelah
(see Theorem 32 of [18] ).

PROPOSITION 12.7: Assume 2<* = ), and let S be the set of all a € [\]<* such
that cof(Ua) # cof(|a|) and that for every infinite cardinal y < |a|, p*°1(V®) < |a].
Then S € Dy, ,.

Proof: First choose h: A — |J, ., P(7) such that |[h7'(8)] = A for all b €
U,<x P(7). Forevery a € S, set wg = {Useq M(a(é))NUa: d € Uﬁ<|a|[ﬂ]c°‘(u“)}.
Now fix A C A. Select g: A > A such that h{g(a)) = AN« and g(a) > a. Let D
be the set of all a € [A]<* such that g[a] C a and Ua ¢ a. Given a € DN S, pick
b C a such that Ub = Ua and o.t. b = cof(Ua). Then choose d C a~'[g[b]] with
o.t. d = cof(Ua). Clearly AN Ua = J;q h((8)). |

The following is now immediate.
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COROLLARY 12.8: Assuming the Generalized Continuum Hypothesis,
{a € [\]<*: cof (Ua) # cof(|al)} € Dj .

Corollary 12.8 can be used to show the following.

PROPOSITION 12.9: Assume that the Generalized Continuum Hypothesis holds,
and that A > k. Let n € w, and let p; € [k,A], i < n+ 1, be a strictly
decreasing sequence of regular cardinals. Foreachi <n+1,let S; ¢ N S;f.. with
Si € {a: cof(a) < x}. Then S € ND},, where

S={ae\<":Vi<n+1U(any) € S;}).

Proof: Wlog assume that g,+1 = & and p, = xt. Select h: o — [po]<"+
with ran(h) € UB(x*, jio), and define ¢: [o]<* — [uo]<*" by letting ¢(a) =
Uaseq h(a). Let Y be the set of all a € [uo]<* such that

(0) Vi <nU(anp) € Sy

(1) aUk C p(a);

(2) i < nU(a i) = Ulpla) N ).
Then set T' = {b € [Y]: Upe, #(B) C b}. By Proposition 3.6, Proposition 5.5
and Corollary 12.8, T € ND':+’M. Define ¢: T — Y so that p((b)) = b. For
each b € T, let w;, be the set of all d € [b]<* such that ¢(b) C d and dN«k € Sny1.
By Proposition 11.4, ;e ws € ND} . Finally set

Kypo*

X={ace[N<®:anp € U wp}.
beT
By Proposition 11.1 and Proposition 11.2, X € N D:’ 5+ It remains to observe
that X C S. |

Note the sharp contrast with the results of [22], which deals with the one
cardinal situation.

If one keeps in mind Proposition 5.6, the following can be seen as another
generalization of the result of Gregory [8].

PROPOSITION 12.10: Let p > & be a cardinal with 2<° < ), let h: X — [A]<%,
and let v < & be an infinite cardinal. Then {a € U}: |a]* = |a|} € D}’,.

Proof: For every o € A, let ma: Upc,uc p(Z"("‘))“ — 2<° be one-to-one. Given
a € U}, pick d, € [a]” with a = | ¢4, h(a). Then let w, consist of all functions
z such that
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(i) dom(z) is a cardinal;

(3i) 0 < dom(z) < p;

(iii) ran(z) C 2%

(iv) if & € d, and if y: dom(z) — 2M*) is given by y(B) = z(8)|h(a), then

mq(y) € a.

Fix H: p — 2*, where p € (0,p) is a cardinal. Let D be the set of all @ € [A]<*
such that if & € a and if y: g — 2M*) is given by y(8) = H(B)|h(e), then
mqa(y) € a. Given a € DN U}, we have z € w,, where z: u — 2% is given by

o(f) = H(B)la. U

13. Ok

Let v be a cardinal with k < v < A. Given § C [A]<%, O} , \(S) asserts the
existence of a sequence w, € [P(Ua)]Sl%l, a € [A]<*, such that for all A C ),
{a€eS:An(aVU(anv)) € w} € NSk .

We let Dy, 5 be the set of all § C [A]<* such that {7, , ,(S) holds.

Notice that Dy ,, , C Dy , , whenever v’ > v. Also, Dy . , = Dy ,.

The following two propositions are respectively proved as Proposition 10.2 and
Proposition 10.3.

PROPOSITION 13.1: (i) Assume cof()) < x. Then D} , , € DX
(ii) Assume cof()) > x. Then D} ) , C D).

PROPOSITION 13.2: Dy , \ = D; , whenever 2<¥ <\,

COROLLARY 13.3: Assuming the Generalized Continuum Hypothesis, Dy , =
D;,A,A = D:f‘: .

Proof: By Proposition 13.1 and Proposition 13.2. |

PROPOSITION 13.4: Let v, p be cardinals such that v < k, p > X and 2<F = )\*.
Then there exist w, € [P(P()\))]SI%l, a € [A]<*, such that for all E € [P())]<®,
{a € [A]<*: |a|* = |a| and E ¢ w,} € NS .

Proof: Let Ey, d € [A]”, be an enumeration of [P(A)]<?. Now for each a € [\]<*
with |a}” = |a|, set wy = {Eq4: d € [a]*}. |

Let us observe the following. Given S C [A]<¥, let Q(S) mean that there exist
we € [P(A))2l], ¢ € [A]<%, such that for all AC A, {a € S: A ¢ w} € NS .
Then Q(S) can be seen as a multidimensional version of the splitting property
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for S. Let us for instance consider the case £ = w; (which is easily generalized).
Then Q(S) holds iff there are Tp , € 5, a < 2* and n € w, such that (i) « # 8
implies To,n N Tp,n = 0; and (ii) S — U, e, Tam € NSk,a.

We will make use of the following fact. Let v, p be infinite cardinals such that
v<P = v and v” > v. Then p is regular.

The following should be compared with Proposition 12.7.

PROPOSITION 13.5: Let v < x and p > )\ be cardinals such that 2<¢ = \*.
Assume either that v = cof(\) and A\¥ = At, or that A<¥ = . Then there exist
wa € [P(PO))212l, a € [A]<*, such that for all E € [P(A)]<°,

{a € [A]<*: cof(Jal) # v, U n” <la| and E ¢ wa} € NSk .
1<|a|

Proof: By Theorems 1.1.3 and 1.1.4 of [23], there exist b, € [A], @ < AY, with
the property that |by N bg} < v whenever a, § are distinct members of \¥. Let
9: Ugcar [ba]” = [P(A)]<? be onto and such that for every a, g is constant on
[ba)”. For every a € [A]<*, set w, = {g([e]): € C |a] and o.t. e = v}. Let
E € [P()\)]<* be given, and let a < A\¥ be such that g(bs) = E. Suppose now
that a € [A\]<* is such that by C a, cof(|a]) # v and for every cardinal n < |a],
7* < |a]. Then |w,] < |a, and letting j: 0.t.(67*[b4]) — @ [ba] be the increasing
enumeration of a7 1[b,], g(&[j[¢]]) = E. |

The following is now easily derived.

COROLLARY 13.6: Assume the Singular Cardinals Hypothesis. If 2°°f») < g
and 2<* < X%, then {a € [\]<*: cof(Ua) # cof(la]} € D} , ».

14. Forcing the failure of ¢j ,

Throughout this section, M will denote a fixed transitive model of ZFC, x an
uncountable regular cardinal of M, and A an uncountable cardinal of M.

We first show that adding one Cohen subset of w; is enough to destroy all
O, A(S)-sequences of the ground model.

PROPOSITION 14.1: Let P be an wj-closed p.o. in M. Let G be P-generic
over M, and assume that M[G] contains an order type w; subset of A that is
not in M, and that A remains a cardinal in M[G]. In M, let S € NS} , and
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w, € [P(a)]<?"°,a € [\]<“1, be given. Then in M[G)], there is A C \ with
{a€eS:ANadw.} e NSIW\.

Proof: Let p € G and r, F in M[G] be such that p forces that F € A*** and
that r is a strictly increasing function from w1 to X with r ¢ M. Let us now work
in M. Set 8 = |{p': p' < p}|, and let p,, ¥ < 8, be a one-to-one enumeration of
the set of all p' < p. Define k: § — w; by letting k(y) be the least {( € w; such
that for each o € A, p, does not force that r(¢) = 0. For each v < 6, let d, be
the set of those o € A such that p, forces that r(¢) = o for some ¢ < k(). We
let D be the collection of those z € [ - A\]<“! such that for every v € z N 6, the
following two conditions are satisfied :
(0) dy C;
(1) given a, 8 € N ), there exist §; € zN B and &, m; € zN A, i < 1, such that
mo # 71 and for each i < 1, ps; < py and ps; forces that F(a,8) = £ and
that r(k(v)) = .
Then D is a closed unbounded subset of [# - \]<“*. Now pick z € D such that
wCzandzNX€S. Let z,, n < w, enumerate (z N A)?>. For each u € 2<¥,
define 4, € 2N 4 and &,, T, € z N A so that
(0) u C v implies p,, < pa;
(1) p,, forces that F(2,(0),2n(1)) = £y, where n = dom(u);
(2) setting v; = uU{(dom(u),?)} for i <1, my, # 7y, and for each i, p,, forces
that r(k(ya)) = m,.
Select f € 2¢ such that for all b € wzny, chf dy, #bnN chf 7. Pick g€ P
such that ¢ < py, for all u C f. Then g forces that F[(zNA) x (zNA)) CzNnA
and that ran(r) Nz € wenn. ]

We then keep adding Cohen subsets of w; until all potential ¢7, ,(S)-sequences

are destroyed.

COROLLARY 14.2: In M, assume that A € w; U (w;,2®°] and let v be a cardinal
with v > ARe. Let G be Fn(v x wy,2,w;)-generic over M. Then in M[G],

= NS A

[

Proof: For each A C v, let G4 consist of all ¢ € G such that dom(¢) C A X w;.
In M[G}, let W € [[,gpjcen [P(@)]<“* and S € NS} , be given. Then there

exists A C v such that |4] < M and S, W € M[G4]. Now observe that
M(G] = M[G4][Gy-a4], and apply Proposition 14.1. |
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The obvious drawback of the method is that 2%t is large in the generic exten-
sion. More precisely if we set in M 8 = v(2"*), then in M[G], v < 2% < 4.
Let us now turn to the case when x > w;. Proposition 14.1 is unfortunately

not so easily generalized.

PROPOSITION 14.3: In M, let u € [, )] and p € [w, &) be regular cardinals such
that v<F < & for all cardinals v € [w, ), and 2<# = p. Further let in M, w, €
[P(a))5l*], a € [A]<*, h: A — [A]<* and S € NS:',A with S C {a € Uh: |a|? > |a|}.
In case p > w, assume that p < x*¥, and that cof(U(aN 7)) = p for alla € §
and all cardinals 7 € [k, u}. Let G be Fn(y, , p)-generic over M. Then in M[G],
{a€S:ANa g w,} GNS;",X for some A C p.

Proof: Let p € G and F be such that p forces that F' € A**. Let us now work
in M. Let Q be the set of all ¢ € Fn(y, &, ) such that ¢ < p and dom(q) € p.
Select bijections ¢: 4 — Q and j: u x & — p. Let D be the set of all @ € [A\]<*
such that
(0) dom(p(y)) €aforall y€anp.
(1) Given a, B € a, ¥y € aNp and § € aN «, there is § € a N u such that
¢(n) < (1), p(n)(dom(p(7))) = & and ¢(n) forces that F[h(a)xh(B)] C a.
@) jllanp) x (@ank))=anp.
(3) ¥ € a whenever there are @ € a N« and b € [a]<P such that p(v) =
Upeb #(B)-
(4) Let n € (0,w), let a; € aNp, ¢ < n, be such that |aj4i1| > a; for all
j < n, and that a; > & > ag, and let b € [ag]<?. If ¥ € p is such that
o(r) = Upes @(cial-++ (d1(8))- ), then 7 € a.
Now pick @ € DN Cx\ N S such that |a| = |a N &|. Select d € [a]® so that a =
Uaea #(a), and let za, a < p, be an enumeration of &*. Put R = {J,¢,(a N k).
We define g5 € Q, f € R, so that the following hold :
(i) f' C f implies g5 < gg/;
(i) if dom(f) = a + 1, then ¢~(gy) € a, gf(dom(gy)4)) = f(a) and gy forces
that F[h(z4(0)) x h(za(l))] Ca;
(iii) if dom(f) is an infinite limit ordinal, then qf = U, qp
Finally pick f: p = a N & so that j{g7] N a & {bN j[dom(gs) X £]: b € w,}. Then
g5 forces that Fla x a] C a and that j{UG]Na € w,. |

COROLLARY 14.4: In M, let n € w be such that 2<k*™ — +n and let p be an
infinite regular cardinal such that 7<° < « for all cardinals T € [w,x). Assume
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that k is either a limit, or else the successor of a cardinal v with v? > v. Let G
be Fa(kt ("t x gtn 2 xt").generic over M. Then in M[G], S ¢ D;  +n for all
Se NSt ,. with S C {a: Vi < n cof(U(a N ¥)) = p}.

Proof: Set Gp = {p € G: dom(p) C B x k*"} for all B C *(*t), In
M[G], let S € NS:’K,L,. with § C {a: Vi < n cof(U(a N s*)) = p}, and let
w, € [P(a)]$1, a € [*"]<*. Then there exists # < ("1 such that both §
and the sequence w,, a € [k*"]<*, lie in M[Gs). Now by Proposition 5.6 and
Proposition 14.3, there are in M[Gg](G(s)], A € x*" and T € NS:"“,, such

that T = {a € S: ANa ¢ w,}. It remains to observe that by Lemma 7.5, T
remains stationary in M[G]. ]

An easy modification of the proof of Proposition 14.3 yields the following.

PROPOSITION 14.5: In M, assume that & is strongly inaccessible, let p € [k, \]
be a regular cardinal with p < k*¥ and 2<# = p, and let w, € [P(a)]Sll,
a € [A]<%, and h: A — [A\]<*. Further let in M S € NS}, be such that for each
a € S, there is some cardinal p such that a € U, [a|® > |a| and for every cardinal
T € [k, ], cof(U(aN 7)) = p. If G is Fn(u, &, p)-generic over M, then in M|G],
{a€S:ANagw,} GNS:',A for some A C p.

The following is now proved as Corollary 14.4.

COROLLARY 14.6: Assuming « is strongly inaccessible in M, we have the fol-
lowing.
(i) IfG is Fn(k* x k,2, k)-generic over M, then in M[G), D} = NS,.
(ii) Assume 2® = k% in M, and let G be Fn(s** x «%,2, x*)-generic over M.
Then in M(G], S ¢ D% ., for all S € NS¥ , with

S € {a: cof(Ua) = cof(a N )}.

Our understanding of diamond star would be much better if we could generalize
the following result to uncountable cofinalities.

PROPOSITION 14.7: In M, assume that A<* = ), let w, € [P(a)]5l%l, a € [\]<,
andlet S € NS;"’A be such that for all a € S, |a|®® > |a| and cof(Ua) = w. Let
G be Fn(), ), X)-generic over M. Then in M[G), {a € S: ANa g w,} € NS;"’A
for some A C .

Proof: Let p € G and F be such that p forces that F' € AA**. Let us now work
in M. Let Q be the set of all ¢ € Fn()\, A, )) such that ¢ < p and dom(q) € A.
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Select bijections p: A = @, j: A x A — A and 9: A = U, A%%“. Let D be the
set of all a € [A]<* such that
(0) dom(ep(7)) € a for all v € q;
(1) given o, B, v, 8, ¢ € a, there are , { € a such that () < ¢(v),
¢(1)(dom(¢p(7))) = & and ¢(n) forces that F|¢ x £ = $({);
(2) jlaxal=a,aNk €k and Va ¢ g;
(3) ¥(Q)l(a N dom($(¢))) x (a Ndom((()))] € a for every ( € a.
Now pick a € DN S. Select x: w — a with J,¢, x(n) = Ua. We define ¢5 € Q,
f € Upew @™, so that the following hold :
(1) f' C f implies q¢ < qy.
(i) ¢™(gs) € a.
(i) ¥ f € a™*!, then gy(dom(gsim)) = f(m) and g¢s forces that
Fl(an x(m)) x (an x(m))] C a.
Set g3 = Uneu Qoin for all g € a. Now pick g € a¥ such that jlg] Na ¢
{b N j[dom(gg) x Al: b € wa}. Then g, forces that Fla x a] C a and that
J[UGINa & w,. 1

Following again the proof of Corollary 14.4, we obtain:

COROLLARY 14.8: Assume that in M, A<* = ) and & is the successor of a
cardinal of cofinality w. Let G be Fn(\*,2, \)-generic over M. Then in M[G],
S ¢ D, forall S € NS/, with S C {a: cof(Ua) = w}.
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