
I S R A E L  J O U R N A L  O F  M A T H E M A T I C S  S8 (1993), 1-43 

TWO CARDINAL VERSIONS OF DIAMOND 

BY 

HANS-DIETER DONDER 

Ma~hematisches In.s~i~u~, Universit~t M~nchen 
Theresie~tr. 39, 800 M~nchen £, Germany 

AND 

PIERRE MATET 

D~pa~emen~ de Ma~h~ma~iques 
U.iversitff de Caen, 1.~03~ Caen Cedex, France 

A B S T R A C T  

Roughly speaking, ~ , ~  asserts the existence of a sequence of size < ~ sets 
that captures every subset of ~ on a stationary set. The paper is devoted 
to the study of ~ , ~  and related principles, which are for instance obtained 
by considering sequences of larger sets, or by requesting the simultaneous 
capture of many subsets of ~. Our main result is that On,~ holds in case 

> 2< ~ . 

0. I n t r o d u c t i o n  

Let s be a regular uncountable cardinal, and let S be a subset of s.  Jensen [10] 

introduced the following combinatorial principle: ~ ( S )  asserts the existence of 

a sequence sa,  a < ~, that  "captures" each subset A of ~ on a s tat ionary subset 

of S, by which we mean that  {a E S: sa = A N a} E N S  +. The starred version 

of diamond, ~* (S )  states that  there exist w~ E [P(a)] -<lal, a < ~, such that  

{a E S: A N a ~ w~ } E NS~ for all A C_ ~. If S is stationary, then by a result 

of Kunen, 0 * ( S )  implies 0~(S) ,  as ~ ( S )  holds iff there are w= E [p(a)]--lal, 

a < ~, such tha t  {a  E S: A N a E w~} E NS+~ for all A C_ ~. 

A two cardinal version of diamond was introduced by Jech in [9]. Let ~ be a 

regular uncountable cardinal, let ~ ~_ ~ be a cardinal, and let S C_ [~]<~. Then 
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(>~,~(S) asserts the existence of a sequence sa, a E [)~]<~, such that  

{aES:sa=ANa}ENS+x for all A C_ )~. 

Such a sequence is called a ( ~ , x ( S ) -  sequence. To see that we are dealing 

here with a generalization of the one cardinal principle, observe that  (~,~(S) is 

equivalent to ~ ( S  n ~), and that ~ E NS*,~. Whereas the original principle 

has been widely used in applications, it has not been so for its analogue for two 

cardinals. (~,~(S) is however not trivial, as it implies that S can be split into 

~<~ many pairwise disjoint stationary subsets. S has thus to be a "large" (i.e. 

of maximal cardinality) subset of [~]<~. Now a stationary subset of [~]<~ is not 

necessarily large, unless the GCH is assumed. Moreover, Gitik [7] showed that 

even if all stationary subsets of [A] <~ are large, some of them may fail to have the 

splitting property. This is in contrast to a result of Solovay that  states that  every 

stationary subset of tc splits into tc many pairwise disjoint stationary subsets. 

It has therefore seemed appropriate to us to prelude our study of diamond with 

a few sections dealing with the size of various stationary subsets of [~]<~. 

After setting some notation in Section 1, we consider in Section 2 some (in)- 

equalities that  are relevant to the computation of s(~, ~), which is the least 

cardinality of any stationary set in [~]<~. Except for a striking recent result of 

Shelah [21] , which is given without proof, all other results are by now folklore. 

Section 3 opens with a characterization of the closed unbounded filter NS*,A. 
Briefly, D E NS*,~ iff there is F: ~ x ~ ~ A such that  D contains all a E [~]<~ 

such that  F[a x a] C a and a n ~ E ~. The result goes back to Kueker [11], 

who used functions defined on [A] <~, and in the present formulation is due to 

Baumgartner (see [5]). It is natural to wonder whether one can do without the 

extra condition on a (1 to. It is well-known that  one can in case tc = Wl. The case 

> wl, where the picture is no longer so clear-cut, has been treated by Feng [6]. 

We observe that  the condition can be somewhat relaxed. For instance in case 

tc = wn+l, it is enough to require that a n wn is unbounded in wn. It is known 

that  assuming A > to, the equivalence above no longer holds, if a single variable 

function G: A ~ )~ is substituted for F.  Still, one may ask whether it is possible 

to get away with functions G: # x A --* A, where p is some fixed cardinal < A. 

Proposition 3.3 answers that question, except for the case when A is the successor 

of a singular cardinal, which remains open. 

The end of Section 3 and the whole of Section 4 are devoted to the study of some 

special stationary sets. We attempt to generalize some results of Baumgartner 
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[2]. Assume we are given two finite sets A C_ [to, ),] and B C_ t¢ of regular cardinals, 

and 7~: A --* B. Let T be the set of all a • [A] <~ such that 

u(a n , )  e < , :  cof( ) = for .11 • A. 

Then T is stationary. Moreover, assuming there is some u E A such that  u > t¢ 

and ~(t~) = w, there are at least u ~° distinct members of TND for all D E NS*~. 

It is easy to think of several ways to strengthen this statement. For one thing, we 

show that one can find u R° incomparable members of T (7 D in case u is finitely 

many cardinals away from ,¢. Another way to improve the statement would be to 

replace in the definition of T {c~ < ~t: cof(a) = ~(/~)} by an arbitrary stationary 

subset of {a </~: cof(a) < ~}. We show in Proposition 9.4 that it can be done 

in case /~ = Wl. 

Fix a regular cardinal p < ~, and consider the set of all a E ~ with cof(a) = p. 

Such an a is internally accessible, in the sense that it has a subset b of size p 

with U#eb fl = a. Section 5 is devoted to a brief study of a two cardinal version 

of this notion. Clearly if ,k > ~, then the coding of a by b cannot in general 

be accomplished via the identity function h(/~) =/~; so one has instead recourse 

to a fixed h: :k --~ [A] <~. This approach is especially helpful when one discusses 

~>~,x in situations where the GCH is not assumed. This has already been done 

by Shelah in [20]. 

Several attempts have been made to adapt the method used by Gregory [8] in 

his proof of ~* to the two cardinal situation. Section 6 is the account of one of 

them, actually a rather crude one, as it yields diamond, and not even diamond 

star. 

We see in Section 7 how to obtain ~>~,x(S)-sequences by forcing. Here and in 

Section 14 we only use simple forcing notions, namely those for adding Cohen 

subsets of a regular uncountable cardinal. As is well-known, forcing one Cohen 

subset of v yields diamond at v (and thus collapses 2 <v to v in the process). 

It yields actually much more, i.e. <>r,x(S)-sequences for all A > v, as well as 

O~,~(S)-sequences for all t¢ < v. For the bottom-up direction, our main result is 

that  adding one Cohen subset of Wl is enough to get <>w,,x(S) for every A > wl 

and every stationary S in the ground model. As regards the other, top-down, 

direction, we have the result of [15]: adding one Cohen subset of A gives O~,x(S) 

for all t¢ _< A and all stationary S in the ground model. As an aside, let us 

remark that  this construction requires A to be regular. We do not know how 
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to handle the case when A is singular (and of cofinality > to, which seems to 

be the most interesting case). It is easy to extract from the proof a stronger 

principle, Q~: x: x(S), which reads as follows : there are Ba C_ A, a < A, such 

that {a E S: Bua N a = A N a} e NS+;~ for all A _C A. As <>~: ~: ~(S) simply is a 

reformulation of <>~,~(S), one can see <~: ~: x(S) as an alternative generalization 

of the one cardinal diamond. The little we know about that new principle is 

expounded in Section 7. 

Section 8 presents yet another two cardinal version of diamond. This time 

the idea is to modify the definition so as to make possible the capture of more 

than one set at a time. To be more accurate, we intend to capture families (as 

opposed to sequences) of sets. Is there an absolute upper limit on the size of 

the families that can be thus captured? That is of course to be expected, but 

we have been unable to show that any such limit exists. Let us now state our 

principle: ~>~<~(S) asserts the existence of a sequence G _C P(a), a E [A]<~, such 

that {a E S: G = {A Na: A E E}} E NS+~ for all E C_ P(A) with IEI < A<~. 

Let us first observe that ~<" (>~,~ (S) is easily shown to be equivalent to <>~,~(S). As 

for the case when A > to, it seems that  once Q~,x(S) has been established, the 

truth-value of ^;~<" v~,x (S) very much depends on the prevailing cardinal arithmetic. 

In any case, we show in Corollary 10.4 that assuming the GCH, <>~,;~(S) implies 

the apparently stronger <>~,<~(S). Diamond principles have originated in the 

study of the constructible universe (where of course the GCH holds), and this 

may explain why <>;~<~ has not appeared in the literature before. tc,~ 

Shelah showed in [20] that <>,~,,~+(S) holds for some S provided ft ~0 = /~. 

Section 9 is devoted to a generalization of that result. Let v be a regular cardinal 

with i¢ < v _< A, and set T = {a E [A]<~: cof(U(a 13 v)) = o:}. As was remarked 

above, we have ITI > v ~°, as T is somewhat ramified. T is however not necessarily 

large. For example, if A = ~+, then ]T I equals (t;+) ~°, which may be less than 

(t;+) <~. We show that  <>s,A(T) holds if we assume that 2 <~ < v. Notice that  

the assumption insures that  every stationary subset of [A] <~ is large. To get our 

result, we modify the games that Shelah used in his proof. Extra care in the 

definition of the games allows us to extend the result to the case when t¢ = ~I 

and A = 2 ~°, assuming that 2 ~° is regular, and that 2 ~° > ~l.  The second 

assumption is clearly necessary, as Jensen showed that  <>,~t does not follow from 

CH, but the status of the first one is not so clear. 

Let <>~,A,A(S) denote the following assertion : there are s~, a E [A]<~, such that  
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{a E S: sa = A NUa} E NS+x for all A C A. Here again, we have that  <>~,~(S) 

is (trivially) equivalent to <>~,~,~(S). The principle <>~,a,a(S) is the last one of 

the paper in our series of two cardinal versions of diamond. It is considered in 

Section 10, where we show it to be implied by (and thus equivalent to) q~,A(S) 

under the GCH. 

Many more diamond sequences can be defined from a given diamond sequence. 

It is for example shown in Section 11 that assuming the GCH, <>~,A(S) implies 

<>~,~({a: a N A e S}) for every cardinal v > A. Provided certain conditions are 

fulfilled (see Proposition 11.4), it is also possible to go down from ~ , ~  to ~u,a, 

where p < x. Here again we follow in the footsteps of Shelah [20]. 

The remainder of the paper is devoted to the study of starred versions of some 
A,A< 4 I'~'~ of the principles considered above, v~,A ~'J  and ~*,A,A(S) are respectively 

featured in Section 12 and in Section 13. It is shown in Section 12 that  assuming 

the GCH, <>*,A(S) holds for every S _C {a ~ [A]<~: cof(Ua) # cof(lal) }. One may 

wonder whether that result is sharp, i.e. whether there are models of the GCH 

where <>*,A(S) fails for every stationary S _C {a E [A]<': cof(Oa) = cof(lal)L 

The answer is immediate in case cof(A) < ~; and ~ is the successor of a cardinal 

v with col(v) # col(A). One also gets a positive answer when ~; = A, and when ~; 

is the successor of a cardinal of cofinality w and A is regular. Those results and 

related forcing constructions can be found in Section 14. 

The results of Sections 9, 10, 12 and 14 are joint work of the authors. Sections 

2-8, 11 and 13 are due to the second author. 

1. N o t a t i o n  

We let On denote the class of all ordinals. Given a,/~ E On with (x </~, we let 

(~, 8) = {~ ~ On: ~ < ~ < ~}, [~, 8) = (~, 8) u {a}, (~, 8] = (4, 8) u {~}  and 

[~, 8] = (~, 8) U {~, ~}. We set ~+~ = ~ .+p.  

Given an ideal I over a set X, we put I + = {B _C X: B ~ I} and I* = 

{B C X: X - B E I}. Given a set X and a cardinal v, we let 

[Xl ~ = ( B  c X:  IBI = ~}, IX] <~ = U [Xl ~' and [Xl -<~ = [Xl <~ u [Xl ~. 
v' <v 

Throughout the paper ~ will denote a regular uncountable cardinal, and A a 

cardinal with A > ~. Let X be a set of size > ~;, and let A C_ IX] <~. A is said 

to be unbounded in case [X] <~ = U,eaP(a). A is closed if for every sequence 
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aa 6 A, a < 7 < x, such that ap C aa for ~ < a, we have Ua<-taa E A. By 

a result of Solovay, A is closed iff A is dosed under directed unions of size < ~. 

A is stationary if A n B # 0 for every dosed unbounded subset B of [X] <~. 

Nonstationary subsets of IX] <~ form an ideal, which we denote by NS,~,x. We 

put NS~ = NS~,~ n P(x).  

We let ND,,,~ denote the set of all S C_ [A] <~ such that ¢~,~(S) does not 

hold. We set ND~ = ND~,~ n P(x).  For any S _ [A] <~, ¢~,A(S) asserts the 

existence of a sequence wa • [P(a)] <-I'l, a • [A] <s, such that for all A C A, 

• s: a n ¢ • fonows from in case S • NS+ , 

as ¢~,A(S) holds whenever there are w= • [P(a)]<l°l, a • [A] <", such that for all 

a C_ A, {a • S: a f] a • w.} • NS+~. We let D*x be the set of all S C_ [A] <~ 

such that <>*,~(S) holds. 

For any set a, fi will denote a fixed bijection from ta[ onto a. Given an infinite 

limit ordinal a, & will denote a strictly increasing function from cof(a) onto some 

fixed closed unbounded subset C of a of order type col(a). 

Given cardinals # _~ w and u > 0, and a set I with [1[ >_ #, Fn(I ,  u, p) denotes 

the set of all functions p such that dora(p) • [/]<~ and ran(p) C_ u, ordered by 

reverse inclusion. For each cardinal p > 0, Fn(p x p, 2, p) is the poser for adding 

p many Cohen subsets of p. 

2. U n b o u n d e d  subse t s  o f  [A] <~ 

We let s(~, A) (respectively u(~, A)) be the smallest cardinality of any stationary 

(resp. unbounded) subset of [A] <~. 

The second author asked whether u(x, A) and s(~, A) are equal. Shelah [21] 

recently showed that they are: 

PROPOSITION 2.1: s(~;, A) = u(~;,A). 

PROPOSITION 2.2: (i) u(~, A) ) A. 

(ii) cof(u(x, A)) > x. 

Proo~ (i) Use the fact that A = UE for every unbounded subset E of [A] <~. 

(ii) Suppose otherwise, and let E be an unbounded subset of [A] <s with lEt = 

u(~, A). Pick Ea E [E] <u(s'A), a < cof(u(x, A)), so that E = Ua<cof(u(s,A))Ea. 

For each a,  choose aa E [A] <s such that for every e 6 Ea, aa - e ~ O. Then 

dearly Ua<cof(u(s,A)) aa - e ~ 0 for all e 6 E,  a contradiction. | 
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PROPOSITION 2.3: A <~ = 2 <~. u(x, A). 

Proof: Simply notice that [A] <~ = UeeE P(e) for every unbounded subset E of 

[~1<'. I 

Thus u(x, A) = A <K whenever A _> 2 <~. 

COROLLARY 2.4: Assume A is a strong limit with cof(A) < x. Then u(x,  A) = 2 x. 

Proof: We have 2 <~ < A and A <~ = 2 x. I 

PROPOSITION 2.5: Let v , p , p  be cardinals such that v • [x,p],cof(u) = v, v <_ 

~+, ~ < l, ~ ,d  ~ < p. Then u(~, ~) < ~(~, U). , ( v ,  p). 

Proof." Let E and H be given such that E is unbounded in [p]<~ and H is 

unbounded in [p]<~. We claim that the set of all a[dn lal] n A, a • E and d • H,  

is unbounded in [A] <~. Given b • [A] <~, start by picking a • E with b C_ a, and 

then select d • H with ~-l[b] _ d. We have b C_ ~[dlq la[] N A. I 

PROPOSITION 2.6: Assume A is a limit with A > ~¢. 

(i) ~fcof(A) > ~, then u(x, A) = U~_<,<x u(x, u). 

(ii) / f  eof(A) < ~, and if  u ,  > ~, a < cof(A), is an increasing and CO'ha/in 

sequence of cardm-~s, then ~(~, ~) < (U°<~o~(~) u(x, ~°))oo~). 

Proof: (i) Set A = Ua<cof(X)va, where each va is a cardinal with ~ _< v~ < 

A. Now observe that if E. is an unbounded subset of [v.] <~ for each a, then 

Ua<cof(x) Ea is an unbounded subset of [A] <~. 

(ii) For each a < col(A), let E. be an unbounded subset of [vo] <~. Given 

d • [A] <~, pick a. • E., a < cof(A), with dNv. C ao. Then d C U.<¢o~(x) a~,. 
$ 

3. Closed  u n b o u n d e d  subsets  o f  [A] <~ 

PROPOSITION 3.1: Let D E NS*,x. Then there eJcfsts F: {([3,or) E A x A: [3 _< 

a} --~ A such that a E D whenever a satis~es the following conditions : 

(i) a • [~]<~ - {0}; 

(ii) F(~,  a)  • a whenever i~, a • a with [3 < a; 

(iii) for every successor cardinal u • U(a N x), there exists n < w such that 

v+-  • u(a n ,,) and I~ n ,'+"1 = , '+". 

Proof." By induction on the size of d, define ad E D, d • [A] <~, so that d Cad, 
and ac C ad for c C d. Given n E [1,w), let fn+l: [A] n+l ~ A satisfy the following 
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conditions. Suppose d E [A] n, and let dp, p < n, be the increasing enumera t ion  

of d. Then  

(o) f,,+l(d u {d ._ ,  + 1}) = ladl; 

(1) fn+l(d U {d,,-1 + 2k + 2}) = ~d(d~) whenever k < n and dk E laal; 

(2) f ,+x(dU{dn- l+2k+3})  = ad--~k}(dk) whenever k < n and dk Z lad-{d,)l- 

Also define gi: [$]2 _.., .X, { < 2, so tha t  

(3) g0(/~, a )  = &(/~) whenever ~ < I~1; 

(4) g l ( ~ , ~ )  = a -~ (~ ) .  

Now fix a one-to-one funct ion j :  [A] 2 --, A. Given h: [A]"+~ --, A, where n E [1, w), 

define J (h ) :  A --* A as follows. Choose hq: [A]q ~ A, q E [1, n + 1], so tha t  

(5) h . + l  = h ; 

(6) hp+l(do,. . . ,  dp) = hp({j(dk, dk+l): k < p}); 

set J(h) = hi. 
Then  define F:  {(fl, a )  E A × )~: fl < a} --* )~ so tha t  

(7) F ( a ,  a )  = eL + 1; 

(8) f ( a ,  a + 1) = 0; 

(9) F(a,  a + 2) = J (g i ) (7)  whenever ce = j( i ,  i + 1 + 7) and i < 2; 

(10) F ( a ,  tr + 2) = J(fn+l)("y) whenever a = j ( n +  1 , n + 2 + 7 )  and n E [1,w); 

(11) F(cr, 6 + 2) = j(ce, $) whenever ct < 6. 

Let a E [A]<~ - {0} be such tha t  F(~,a)  E a for a l l /~ , a  E a with ~ < tr. Then  

fn+l[[al n+l] C_ a for all n e [1,w), and gi[[a] 2] C_ a for all i < 2. Moreover,  if t~ is 

the least infinite cardinal < t¢ with a f3 u # t,, then  t, is a successor and a t3 u E t,. 

Also note  tha t  if p is an uncountable  cardinal < t¢ with o.t. (a N p+) > p, then  

la n Pl = P. 
Let us finally assume tha t  for every successor cardinal  v E U(an  ~), there  exists 

n < w such tha t  v +" e O(an,~)  and ]an t ,+" [  = v +".  Then  a N ~  E ~. It is easily 

verified tha t  a = U{a~: d E [a] <'~ - {0}}. As D is closed under  directed unions 

of size < ~, we have a E D. 1 

Let cp(x, po, ...,pk) be  a formula of set theory with parameters  p0, ...,pk. We 

let ~r,,,~(cp(x,po, ...,p~)) mean tha t  given D E NS~,~, there  exists F :  AU [A] 2 ~ A 

with the proper ty  tha t  a E D for all a E [A] <~ - (0} such tha t  f [a  U [a] 2] C a 

and ~(a, po, ...,p~). By Proposi t ion 3.1, we have the following : 

(i) ~',~,~(x = x) for t¢ = wl. 

(ii) ~ , ~ ( l ~  n ~ . l  = ~ )  in case n e (0 ,~ )  and ~ = ~ + , .  

(iii) 7r~,~({n ~ w: I~ n ~ l  = ~ ,}  ~ [~1~) for ~ = R~+~. 
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(iv) 7r~,;~(v _C z ) i n  case t¢ = v +. 

Given an infinite cardinal  v, we say tha t  there is a Jonsson algebra on v if 

there  exists g: v x v ~ u such that  g[b x b] - b # 0 for all b E [u] v - {u}. See [4] 

and [3] for more  on Jonsson algebras. 

PROPOSITION 3.2:  Assume that ~ = v +, and that there is a Jonsson algebra on 

~. The, ,  ~ , ~ ( [ x  n ~1 = ~) ho~ds. 

Proof: Choose g: v x v ~ v such that  g[b x b] - b # 0 for every b E [v] v - {v}. 

Fix D E NS*,.~, and let j be as in the proof  of Proposi t ion 3.1. Now define 

F:  {(~,o  0 E A x ,~: /3 _< a} ~ .~ so tha t  F satisfies condit ions (7)-(10) of 

Proposi t ion 3.1, and moreover for every m E w and every limit ordinal  6, 

(i) F ( a , ~ + 3  re+l) = j ( a , ~ + m ) i n  case ~ + m  > a; 

(ii) r ( a , ~  + 5 m+l) = g(o~, (~ -{- m)  in case 5 + m • [a ,v) ;  

(iii) F ( a , 6  + 7 re+l) = g ( 6 + m , ( ~ ) i n  case 8 + m  • (a,  ~,). 

Then  proceed as in the proof  of Proposi t ion 3.1, and observe the following. If 

a • [A] <~ is such tha t  l a d  v I = v, and that  F ( ~ , a )  E a for all fl, a • a with 

/~ _< a ,  then  v _C a. | 

See Proposi t ion 4.3 for a part ial  converse to Proposi t ion 3.2. 

Le t / z  < )~ be a cardinal,  and let F:  # x A --* A. We let CF,~ denote  the set of 

all a E [A]<~ such that  a Dt¢ E ~ and F[(a D Iz) x a] C_ a. For every b • [A] <~, we 

set b, = U.e  b., where 

(0) b0 = b u F[(b n x b]; 

(1) b2p+l = b2p U F[(b2p D ~u) x b2p]; 

(2) b2p+2 = b2p+l U U(b2p+l D g). 

Clearly, b, . )  = n{a  CF, : b C_ a}. 

PROPOSITION 3.3: Assume A > to. Then there is D E NS~,~ such that for  every 

regu/ar  cardinal # < A and every F: lz x A -* A, CF,~ - D is unbounded in [A] <~. 

Proof:  Choose a one-to-one funct ion j :  [A] 2 ~ A, and let D be the set of all 

a • [A] <~ such that  j[[a] 2] = a D ran( j ) .  Let F :  ~ x A ~ A be given, where ~ is a 

regular  cardinal  < A, and fix d • [A] <~. Set v = ~ U/z. Choose S E [~,+]~+ such 

tha t  e(F, dU { a } , v ) n v  = e(F, dU {/~},v)D v for all a , ~  E S. Pick X E [S] ~ and 

70 ~ S -  U,~exe(F, dU {a},t~). Then  find 7~ • X - e(F, dU {7o},V). For each 

i < 2, set xi = U , ~ ,  z~', where 

(0) x~ -- dU  {7~} U F[ (dn  ~u) x (dU {7~})]; 
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(1) .,-3'+~ = =~P U U(=~' n ~); 
_3p+2 3 p + l  I I /  3p+l (2)., =,,~ v~_~ n~); 

_3p+21 = -~P+= U F[(z~ p+2 91 #) x .~ j. (3) ;~p+3 -i 
Clearly ffi E zi - =l- i .  Moreover zo 13 p = Zl 13 p. Finally set =2 = z0 U zl .  

Observe that  for all rn < 3, d C_ zm and zm E CF,~. It is not difficult to verify 

that {ZO,Zl,Z2} -- D ~ O. | 

Let c(~, A) be the smallest cardinality of any closed unbounded subset of [A]<g. 

We of course have ,(~, A) < c(~, A) _< A<g. The following is a special case of 

Proposition 1.8 of [17]. 

PROPOSITION 3.4: Let p E [~, A] be a card/ha/, let F: A x A -* A, and set 

D = {b n p: b E OF, g}. Then D is a dosed unbounded subset of [p]<g. 

Proof: It is easily verified that D = {a E [p]<': e(F,a,~) n p = a}. Now D 

is unbounded in [p]<g, since for every a E [p]<g, e(F, a, ~) f) p E D. Then let 

a~ E D, a < 7 < ~, be such that at~ C_ a~ for/3 < a. We have ¢(F, Ua<~ a~, ~) = 

Uo,<.~ e(F, ao,, . ) ,  and consequently Uo,<~, a~ E D. | 

COROLLARY 3.5: c(/¢, ~) _~ C(/~, ~) for each carc/~na/~ ~ [~, A]. 

The following is a slight improvement upon Theorem 1.1 of [2]. 

PROPOSITION 3.6: Let n < w, and let p~ ~ [~, A], i <_ n, be a strictly decreasing 

sequence ofregu/ar cardLua/s. For each i, let S~ C_ {a: col(a) < to} be a stationary 

subset of pi, and let Xi  E [(~, A]] <g consist of cardinals of col'reality >_ to. Assume 

that Xo C_ (p0,A] and that X j + l  ~ ( p j + I , P j ) .  Then T E N S ~ ,  where T is the 

set of all a E [A] <g such that for each i _< n, U(a n p~) E S~ and for a / / v  E X~, 

cof(U(a n v)) = cof(U(a 91 p~)). 

Proof.. Wlog assume that p ,  = ~¢. Fix F: A x A ~ A. Define for each i, 

a? E [A] <~'~, a < p~, a~ E p~ and ~0~: X~ U {p~} ~ [a?~] <g so that  

(0) o.t. ~,(~) = co~(u(,~" n ~)); 
(1) u~(~ )  = uOP n ~); 
(2) ,,o. = Ui<~ ran(~i) U U~<h X~ u 0'd; 
(3) ,¢' = Up<.. 4 whenever ~, > 0 i. a ~.~t orah~ ; 
(4) a~ +~ = a~' U F[a~' x a~'] U U(a~' n/~i) u {(U(a~ n v)) + I- v E X~ U {/J~}}; 

(5) ~ is a limit ordinal; 

(6) UCa~' n ~ )  ~ S~. 
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It is easily checked that a~" E T N CF,~. I 

The following should be compared with Corollary 2.4 of [2]. 

PROPOSITION 3.7: Let n < w, and let Pi E [~, A], i < n + 1, be a strictly 

decreasing sequence o£ regular cardina/s. Fix q E n ÷ 1, and for each i ~ q, let 

Si C_ {a: col(a)  < n} be a stationary subset of pi. Put  

When I{" r n D: cof(u(a n = >- for ever, D E NS:, x. 

Proo~ Wlog assume that p ,+ l  = n. Fix F: A x A ~ A. Use Proposition 3.6 to 

find A E [A] <~'+ with the following properties: F[A x A] C_. A, Af3 p + E p+ - p,, 

and for every i < q, U(A N Pi) E St. For each i < q, choose zi E [A] <~ with 

Uzi = U(An  pi). Then set z = Ui<qZi. Put T = {a E (#q+l,#q): col(a)  = w}. 

For every a E T, inductively define ~ '  E Si, q < i < n + 1, so that 

(0) / ~  > pj+l  whenever ] < n + 1; 

(I) Pin e(F, z U ran(&) U U,<j<i ran(/97),/~i) =/9~. 

Choose/~i, q < i _< n + I, and a stationary subset To of T such that/3~ =/~i 

whenever a E To and q < i < n + 1. Set u = z U/~,+1 U Uq<i<.+l ran(/~i). 

By induction on the domain of f ,  we define a stationary subset T! of To and 

7!  E pq, f E Ur, e~ P~"+~, as follows. Let g E p~" be given. By induction on 

6 < pg, construct r/6 and Y6 so that 

(2) I~ is a stationary subset of Tg; 

(3) r}6 e naEY, ran(&); 
(4) r/6 > U(e(F, u U {~,1,: 1 < p < m} ,  ~) n ~,); 
(5) 6 f < 6 implies ~, < ~6. 

For each 6 < p~ with cof(6) > ~, pick 0 < 6 and a stationary subset W~ of 

I~ such that for every a E W6, {~/(: ~ _< ~ < 6} I"1 e(F, u U ran(&), ~) = 0. 

Select ~ and a stationary B _ {6 E (~, pC): col(6) _> ~} such that ~t = ~ for 

all 6 E B. Finally let 6~, ~ < p¢, be the increasing enumeration of B, and set 

T~u{(m,O} = W~ and %u{(~,O} = r/~¢. 

For each f E/=~, set =! = e(F, u U {~/!Im: 0 < ra < ¢0}, ~). Clearly, 

e(F,. U {V~lm: 0 < m < p}, ~) C_ N e(F, u U ran(a), ~) for every p > 1. 
aETII~, 

Consequently z/E Y. Also, z/E CF,~ and U(=/n/~) = U0<m<~ 7/Ira. Now let 

f, g E/=~ and m E o~ be such that fl m = gl m and .f(m) < g(m). Then 7!I,-+I 
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U~eTsl" e(F, u U ran(&), ~) for all p > m, and consequently 7fln,+x ~ x l  - x~. 

I 

The following is due to Baumgartner [2]. 

COROLLARY 3.8: Assume A > to. Then c(~, A) ~ A i%. 

Proof: If t¢ ~° >_ A, then the result follows from Proposition 3.7, as A ~° = tc ~°. 

Otherwise, we have u(w~, ~) < A and by Proposition 2.3, u(wz, A) = A ~0. Then 

A~0 _< u(~, A), as by Proposition 2.5, u(w~, A) <_ U(Wl, to). u(tc, A). $ 

By a result of Magidor [13], if there is no wrErdSs cardinal in the core model 

K,  then c(tc, A) -- A ~0 in case col(A) > to, and c(~, A) -- A + • A ~° otherwise. 

On the other hand, Baumgartner [2] showed that it is consistent relative to the 

existence of an wl-Erd6s cardinal, that c(w2,w~) = R~' and R~ ° < R~'. Magidor 

[13] also showed the following. Assume either that there is no inner model with a 

measurable cardinal, and that A < R~ 2 , or else that there is no w2 -ErdSs cardinal 

in g .  Then c(~, A) _< A~ in case cof(A) _> ~, and c(~, A) <_ A+. A ~' otherwise. 

4. Small stationary sets 

We define C~,~ c_ [A] <~ by letting a E C~,~ iff 0 E a (1 ~ E ~ and for all a E a, 

~ +  1 ~ ~ and ~ n  ~ = ~ [ ~ n  I~1]. 

It is easily seen that C~,~ E NS*,~. C~,;~ has the following interesting property. 

PROPOSITION 4.1: Let p E [~, A] be a cardinal, and let a, d E C~,A with a n p # 
t i n , .  Then {b _C a n d n ~ :  W e ( a U d ) n ~  bn (~ , ~ .  I~l +) # 0) = 0. 

Proof: Let a E C~,~ and b C_ a n p be given such that b n (a, ~. lal +) # 0 for 

a l l a  E a r l p .  Given fl < p, define fn ,  n < w, as follows. Set fl0 = ft. Let 

fl,,+l = 0 in case fn  < a r~ ~, and let fn+l  = A in case (fn,  to. [fin] +) n a = 0. If 

(fin, [fn[ +) n (a - ~) ~ 0, put fn+l  = &-l( fn) ,  where a is least in b - (fin ÷ 1). 

Then it is easily seen that fl E a iff fin = 0 for some n. I 

COROLLARY 4.2: s(t¢, t¢ +~) < (~+6)161 for all $ E ~ -- {0}. 

Proo£'. By Proposition 2.1 and Proposition 2.5, s(tc, ~+n) = tc+n for all n E 

w. Now let ~ E t o - w ,  and let S be the set of all a E C~,~+~ such that 

cof(U(a N ~+(~+z))) = w for all/3 < 5. Then S E NS+~+e and IS[ _< (~+6)161. 

$ 
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We now briefly re tu rn  to the problem of finding a more economical character-  

ization of members  of the closed unbounded  filter. 

PROPOSITION 4.3:  Assume that  A < ~¢+~, tha t  ~ = v +, and tha t  Ir~,x(]zNvI = v) 

holds. Then there is a Jonsson a/gebra on v. 

Proof: By the assumption,  there  is F:  A U [A]2 ~ A such tha t  a E C, .x  for 

all a E [A] <" with F[a U [a] 2] C a and la f'l v I = v. Now pick b 6 [A] <" so tha t  

vOF[bO[b] 2] _ b, and cof(U(b)) = w for every cardinal p E [~, A]. Define h: w -* b 

so tha t  U(ran(h) N p) = U(b N p) for every p E [~, A]. Then  let g: b × b ~ b be 

such tha t  

(0) g ( a , a )  = a + 1; 

(1) g(a + 1, a )  = 0; 

(2) g(fl + 2 , a )  = f l - l ( a )  whenever fl > a ___ w; 

(3) g(n + 3, 0) = h ( . )  for • 

(4) g(a + 2, a )  = F ( a ) ;  

(5) g(fl, q)  = F({f l ,  a})  for fl < a .  

Now let a • [b] ~ be such tha t  g[a x a] C_ a. 

We claim tha t  I a N v I = v. The  claim is immediate  in case v = w, as w C_ a. 

Thus  assume v > w. It is clearly enough to show that  la fl Pl = v whenever p is 

a cardinal  such t h a t / a  > v and la f3 (#+ - #)1 = v. Let such a # be given. Let  

us first assume tha t  o.t. (a N (p+ - p))  > v. Let fl • a fq (p+ - p) be such tha t  

o.t. (a f~ fl) = ~,. Then  clearly # -1  [(a N fl) - w] • [a N piP. Now consider the 

case when o.t. (a N (/~+ - #))  = v. Then  v is a limit cardinal  (of cofinality w), as 

U(a f') p+)  = U(b N p+).  Moreover, by the same argument  as above, we have tha t  

I a f3 Pl -> P for every cardinal p < v. Hence la N/z I = v. 

It easily follows from the claim that  a = b. Finally define k: v × v ~ v by 

lett ing k(a ,  fl) = b- l (g(b(a) ,  b(fl))). It is easily verified tha t  k[a × a] - a 7£ 0 for 

a l l .  • - {v}. i 

PROPOSITION 4.4: Let n < w, let q • n + 1, and for  each i ~ q, let Si C_ 

{a: cof (a )  < ~} be a stationary subset of  ~+("+~-i).  Pu t  

Y = {a • [~+(,+1)]<~: Vi ¢ q U (a N ~+( ,+1- i ) )  • Si}. 

Let D • NS*,~+(,+,), and set Z = {a • Y N D: cof(U(a N n+( ,+ l -q ) ) )  = w}. 

Then there are x I • Z, f • ( , ;+( ,+l-q))w, such that {or all f ,  f • ( tgq ' (n+l-q))  w 

with f C f ' ,  x f  - x l, ~ O and xf, - x l ~ O. 
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Proof." Pick F: x +("+1) x ~+(,+1) __, x+(,+l) with CF, tc ~ D N C~,~+¢.+1). Let 

To, u and fli, q < i _< n + 1, be as in the proof of Proposition 3.7. Define d/, i E 

(q ,n+l] ,  by letting d,+a =/3,+1 and for all j E (q ,n+l ) ,  d i = I.J~e,~n(~) &[dj+l]. 

Now for all f E Ume~(tc+(-+l-q))", define a stationary subset Tf of To and 

71 E ~+(,+l-q) as follows. Let g E (x+(,+x-q))m be given. Select r/8 and Y6, 

6 < t¢ +("+~-q), so that 

(i) conditions (2)-(5) of the proof of Proposition 3.7 are satisfied; 

(ii) T/~ > ~+("-q); 

(iii) o.t. ~6[dq+l] = o.t. ~,[dq+l] for all 6, 6' < n+(,+l-q). 

Then set Tgu{(m,s)} = Y~ and 7gu{(,,,~)} = r/6. 

Finally for each f E (tc+("+x-q)) ",  set x! = e(F,u U {Tfl~: 0 < m < w},x). 

Each x I E Z N C~,~+¢.+~). Now let f ,  g E (~+(-+al ) ) , ,  and m E w be such that 

f ire = gl m and f ( m )  # g(m). Then x fn ' f f ]m -~ xgNTflm , but 7flm+a E Z f - -  Zg 

andTglm+l E X g - X y ,  aso.t .  ( x lNTf lm+l )=o . t . (Xg f ' lTg im+l ) .  l 

Let A be a set of ordinals, and let p be a cardinal with o.t. A > p. A is said 

to be p-closed if Ud E A for all d C A with o.t. d = p. 

Let R~,x be the set of those a G [)q<~ that satisfy the following conditions: 

(0) a + l E a i f f a E a ;  

(1)  a fl ~ E ~; 

(2) given a limit ~ • a, &(/3) • a iff/3 • a, and for every 7 • a, O(9' N ran(&)) • 

a .  

R~,x • NS*,x. Moreover the following holds. 

PROPOSITION 4.5: Let # • [x,A] be a cardinad, let a • R~,x and let p • [w,~¢) 

t,e reg lar ca.rdln I such that p ¢ cof(u(  n evew regular c din t 
v • [g, ~t+]. Then a fl # is p-dosed. 

Proof: Let d C a l l #  be such that o.t. d =  p. We haveUd < U(al"l/~), as 

cof(U(a fl #)) # p. Set a = N(a - Ud). Then a is a limit ordinal. It is readily 

verified that Ud = Uae,ncof(~) &(/3)' We cannot have col(a) > ann,  as this would 

yield cof(U(a O (x .  cof(a))) = p. Thus a f l  cof(a) = cof(a), and consequently 

U d = a .  I 

The following is due to Baumgartner [2]. 

COROLLARY 4.6: c(t¢, t¢ +") < x ~" • t; +" for a/l n < w. 

Proof." By Proposition 4.1 and Proposition 4.5. I 
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We will devote  the  remainder  of the section to a general izat ion of L e m m a  3.6 

of [2], 

Let n E w, and  let # E [to +( '+1) ,  A] be  a cardinal. Also let pi, i < 17. 4" 1, be  

a str ict ly decreasing sequence of regular  cardinals < ~¢. For every a E [)~]<~, we 

define the two-person game G(a) as follows. Each player  makes  n + 1 moves.  I 

( respect ively II)  produces  Yi (resp. zi), i < n, such tha t  

(0) Y0 C_ a ¢3 # and  Yj+l C_ zj; 

(1) zi _c yi; 

(2) o.t. yi = o . t .  zi = pi; 

(3) N(a - Ud) G y0 for every d _C y0 with o.t. d = Pn+l; 

(4) N(zj - Ud) E Y1+1 for every d _C Y1+1 with o.t. d = Pn+l. 

I I  wins iff zn is p ,+ l -c losed .  

PROPOSITION 4.7: Let a E R~,x with cof(U(a ('1 #)) ~ P0 and  P0 C a fq ~;, 

and assume that  II  has no winning strategy in G(a). Then there is a strictly 

decreasing sequence vi, i _< n +  1, o [ r egu la r  cardinals such that  v ,+ t >_ i¢, vo < # 

and for  all i, cof(U(a N ui)) = Pi. 

Proof: Assume tha t  the  conclusion of the proposi t ion fails. We will define a 

winning s t ra tegy  7- for I I  in G(a). Consider a run  of the  game  where  I plays yi, 

i < n. Induct ively  define di, ai,  ci and ~i,  i < n, so tha t  

(o) do = uo; 

(1) ai = N(a - Udi); 

(2) ci __C_ cof (a i )  and  o.t. ci = pi; 

(3) ~i is a str ict ly increasing funct ion f rom ci to di such tha t  for every 3' Ec i ,  

~i(7) = O(di - '~(7)) and ~i('Y) = n(ran(~i) - Use.r~,(~oi(6) + I)); 
(4) r(yo, ..., yi) = qoo[~l[...[qoi[ci]]...]]; 

(5) di+l C c 1, and Y j + l  = ~0[~l[.. .[~/[dj+l]].. .]].  

Final ly  let e C r(y0,  ..., y,,) with o.t. e = p , + l .  Let u be  such tha t  e = 

~0[~x[...[~,[u]]...]]. Then  Uu e a, and consequently Ue G a, as 

Ue = ~ o ( ~ , ( . . . ( ~ ' , ( U , , ) ) . . . ) ) .  

I t  is now easy to check tha t  toe G r(y0, . . . ,yn).  I 

Induct ively  define the  (P0, ..., pi)-filter on a limit ordinal  a with co l (a )  > p0 as 

follows : 
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(0) A C_C_ a lies in the (p0)-filter on a iff A contains a set B such that B is 

p0-closed and unbounded in a; 

(1) A _C a lies in the (p0,...,pj+~)-filter on a iff {3 < a: A n 3 lies in the 

(p~,..., p¢+~)-filter on 8} nes in the (p0)-~ter on ~. 

We leave it to the reader to verify that the (p0, ..., pi)-filter on a is a pi +- 

complete filter, and that each of its members is cofinal in a. 

PROPOSITION 4.8: Let a • [$]<~ with cof(U(a t3 p)) > p0, and assume II has a 

winning strategy in G(a). Then a O # lies in the (po, ..., pn+l)-lqlter on U(a n p). 

Proof: Let A be the set of all 8 < U(a O p) such that there is d C_ a with 

o.t. d = P0 and Ud = 8. It is not difficult to show that A lies in the (Pl, . . . ,p,+l)- 

filter on U(a f3 p). l 

5 . ~  

Let h: A ~ [A] <~, and let v < x be an infinite cardinal. We let U~ denote the 

'set of all a e [)*]<~ such that there exists d E [a] ~ with a = Uaed h(a). 

h for all infinite a E [hi <~. If A = t¢ Notice that if h(a) = {a}, then a • U I,I 
U h and h(a) = a, then a • col(a) for every limit ordinal a • (0, to). 

Set B(t¢, ~) = {a • [A]<~: O a • A} and 

VB(~,~) = (E c B(~,~): B(~,~) = U P(a)). 
a E E  

Using the results of Section 2, it is easy to see that IEI = A for some E • 

UP(to, ~) iff u(t~, #) < A for every cardinal ft • [to, ~). 

PaOPOSITION 5.1: Assume that ran(h) • UP(to, A). Then Uh /XU~ • NS,~,x 

for every h': ~ -~ [~l <~ with ran(h') • UB(~, ~). 

Proof: Let F: A ~ A be such that h(a) C_ h'(f(c~)). Then 

h I 
{a • uh:  f[a] U U h'(8) C_ a} C_ U . m 

11 y 
#Ca 

Let us observe the following. For each a E U~, pick d.  E [hi ~ with a = 

Uac j ,  h(a). Put S = {a E U 4.v. U d, < Ua}. Then S E NS,,,x, since otherwise 

there would exist S' E P(S) n NS+x and a e ,~ such that US' C U~<a h(8), 

which cannot be, as [U~<~ h(fl)] < ,~. 
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PROPOSITION 5.2: 

Proof: {a • [A]<": 

PROPOSITION 5.3: 

{a • U.h: cof(U(a n 

Proof: {a • [A]<'~: 
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{a e u~.: lal > la n,d} • NS.,~. 

v,~ • a Ih(,~)l < la n ,d} • gs:,x.  I 

Let ~ E [~,,~] be a card/ha/ ~ t h  eof(~) >_ ~. Then 

~)) > ~,} • N s . , ~ .  

Va E a U (h(a) n ~,) < u(a n ~)} • NS~*,x. I 

PROPOSITION 5.4: Assume that ran(h) 6 UB(~,A),  and that cof(A) ~ (v,~). 

Let n 6 w, and let #i 6 [~, A], i < n, be a strictly decreasing sequence of  regular 

cardhaa/s. For each i < n, let Si E N S  + with Si C_ {a: eof(a) < v}. Then 

r n vh. • g s . + x ,  where T = {a • [~1<': Vi < n U (a n #,)  • SO. 

Proof." Fix D • NS~,,x. Choose F:  A × A ~ A such that 

cF, .  c_ {a • D: a = U h(~)}. 
otEa 

We define g: [A] <'~ ~ CF,~ N U h as follows. Given c • [A] <'~, let am, bin, Cm and Is 

dra, m < w, be such that: 

(i) Co = c U v U Udc, g(d); 

(ii) a,, = cm U F[cm x cm]; 

(iii) bra = U(a,, N n); 

(iv) [dm[ <~ u and am U bm C URea,, h(a); 

(v) c,,+1 = d,~ U U~ed., h(a). 

Then set g(c) = U,~e~ am. 

Now define by induction ai • Si, i <_ n, so that g(c) N #i _C ai for all c • 

[Or i U Uj<i ran(dJ)] <~" Finally set a = U{g(c): c e [Ui_<nran(di)]<~}. Clearly 

a • CF, K n U h. Moreover U(a fl #i) = ai for all i < n. I 

+ PROPOSITION 5.5: Assume that ran(h) E UB(x,  A), and let S E NS~, x, where 

# • (w, ~] is a cardinal such that cof(A) ~ [#, ~). Set 

D = { a e [ A I < " : a C _  U h ( a ) }  and T = { U h ( a ) : a E S M D  }. 
ctEa a E a  

Then T E N S+~. 

Proof." Left to the reader. I 

It is easy to see that Proposition 5.4 can be derived from Proposition 5.5, 

Proposition 3.6 and the following observation. Let r / •  [1¢, A] be a cardinal with 

cof(r/) > ~. Then {a • [A]<t': U (a I"17/) = u((U,~ a h(a))  f'l r/)} E N S ; ,  x. 
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PROPOSITION 5.6: Assume A = t~ +s, where [6] < v, and let S be the set of  a J1 

a E [AI <~ such that for  every regular  cardinal # E [,¢, A], cof (U(an  #)) < v. Then 

SLSUh~ E NS~,x for some h: A -* [A] <~. 

Proof." Let g: [A] <w --+ [A] <s be as follows: 

(i) g ( { ~ } )  = ~ for all ~ • ~; 
(ii) let n • w - 1, and let a r • A, p < n, be such tha t  a0 • ,¢ and for all j < n, 

~i  < I~i+11. Then  g({ap: p < n}) = o~n[...[O~l[Ot0]]... 1. 

Select a bijection j :  [A] <0' --* A, and set h = g o j  -1.  Then  

{a • S n C~,x: j[[a] <~] = a} _c U h. 
// 

Final ly apply Proposi t ion 5.3 to get U ~ - S • NS~,x. I 

Let us observe tha t  if A = t¢ +~ with 6 _< w, and if h: A ~ [A] <~ is as in the 

proof  of Proposi t ion 5.6, then  ran(h)  • UB(tq A). 

PROPOSITION 5.7: Let # • (w, to) be a regular cardinal, and let T C_ {a • 
h .  , Uw<,<~, u , .  # o U c ,  e a h(a) c_ a}. Then there  exist pairwise disjoint Da • NS,,~, 

a • T .  

Proof." For each a • T,  select d~ C_ a such tha t  Idol < ~, and a = U ~ d .  h(~). 
Now put  D ,  = {b • [a]<": da _C b}. i 

6.  <>~,X 

For each b E [A] <~, let b: o.t.b ~ b be the increasing enumera t ion  of b. Given 

a E [A] <~ - {0} and an infinite cardinal /~ < ~¢, let K,, t ,  denote  the set of  all 

k E P(a)" such tha t  a = U~,<, k(a) ,  and tha t  for all a,/~ < # with a < 8, 

k (a )  _C k(/~). Then  let ~oa,~,: K~,~, --* ,¢" × P0¢)[ "13 be defined as follows. We let 

~oa,,(k) = (g,h), where g(a)  = o . t .k(a)  and h(a, fl) = k(fl) l [k(a)] .  

LEMMA 6.1: ~a,. is one-to-one. 

Proof." Fix (9, h) E ran(~,g). 

U {1¢} and t: o . t .a  --* # so tha t  

(o) ~(~,~) c_ 9(~); 

(1) r(O, cr) = O; 

(2) ~(~,~) 
(3) s(~,~) 

Define r: (o.t .a) x # --* P(t¢), s: (o.t .a) x # --* 

= Us<-t r(6, a )  whenever 7 is a limit ordinal  with 7 > 0; 

= ,¢ in case r(7,  a )  = g(a) ;  
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(4) s(% a)  = n(g(~) - r('r, a))  in case "('r, o,) c g(~); 
(5) s(7 , t(7)) ¢ h(fl, t(7)) for all ~ < t(7); 

(6) s(7 , r/) • h(t(7), 77) for all rl > t(7); 
(7) r(7 + 1, o~) = r(% a) for all a < t(7); 

(8) r(7 + 1, a)  = r(7 , a) U {s(7, a)} for all a > t(7 ). 
Finally define k • K=,~, by letting k(a) = {~(7): a > t(7)}. It is easily verified 
that  {k} = ~o~,~(g, h). = 

PROPOSITION 6.2: Let r / •  [~, )q, v and/2 • [0, v) be cardinals such that cof(r/) > 

/2, ~ = v +, 2 ~ < A, cof(/2) =/2 and v ~ = v. Then 

{a e [A]<': cof(U(a O r/)) =/2} e ND+x. 

Proof." Select a bijection j :  [n]<" --+ 2 ~. Given a C [A] < ' ,  we define w= C_ P(a) 

by letting b E wa iff there exist k E Ka,t, and m: # ~ a n 2 ~ such that ,  setting 

(g, h) = ~0=,,(k), we have 

(0) ran(g) g a n ~; 

(1) j[ran(h)] c a n 2~; 
(2) b = Ua<~, k(a)[j- ' (m(a))  FI o.t.k(a)]. 

Now fix A C A and F:  A x A --+ A. Define k:/2 --* [A] <~ so that  

(i) o.t .k(a) e k(a + 1); 

(ii) j(k(~) l[k(a)]) • k(/~ + 1) whenever a </~; 

(iii) j(k(a) I[A n k(a)]) • k(a  + 1); 

(iv) k(~) c k(~ + 1); 
(v) k(fl) = Ua<# k(~) whenever/5 is a limit ordinal with fl > 0; 

(vi) (U(k(a) n ~)) + 1 E k(a  + 1); 

(vii) k(a) • CE,,. 

Finally set a = U~,<~ k(a). Then a • CF,,, cof(U(a N r/)) = /2  and a I"1 a • w=. 

I 

7. ~ , x  via Cohen forcing 

Given S C_ [A] <~ and a cardinal # e [~, A] with col(/2) > ~, 0~: ~. x(S) asserts 

the existence of a sequence sa E U#eon P(•), a </2, such that  

{ a E S : S u ( , n ~ ) O a = A n a } E N S + x  for a l l A C A .  

Such a sequence will be called a ~}~: u: a(S)-sequence. 
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Clearly On: u: x(S) implies 0~,x(S). Also notice that On: n: n(S) is equivalent 

to ¢n(S  n ~). 

Just as Cn,x(S) (see [14]), On-j,. x(S) can be reformulated in terms of parti- 

tions. 

PROPOSITION 7.1: The fo//owing are equivalent : 

(i) <>n. ,.. x(S) holds. 

(ii) There exists H 6 p(/~)x such that {a 6 S: U(aN~) 6 N,~e,, ~(°0} 6 NSn+x 

for every ~ e I-L<AH(~), ~ - H(~)}. 

Proo~ (i)-*(ii): Given s .  6 U#eo.  P(fl), a </~, define H 6 P(/t) x by letting 

(ii)~(i): Given H E p(/~)a, set s ,  = {f~ < A: a E H(fl)} for all a < #. I 

+ 2 ~ - COROLLARY 7.2: Assume 0n: ~: x(S) holds for some S E NSn, a. Then > )~ 

and 2 <n _< g. 

Proof." Let H E P(/z) ~ be as in the statement of Proposition 7.1, and let v E 

(0,n) be a cardinal. Then N a ~  ~0(~) ¢ 0 for all ~o 6 l - I~u{H(a) , /~ - H(~)}. 

Hence 2 v _~ #. We leave it to the reader to verify that 2 ~ >_ A. | 

Assume that A is a strong limit cardinal of cofinality < a, and let S 6 NS+x.  

Then by Corollary 7.2, we have that for every /~ E [x, A], On: ~,: x(S) does not 

hold. Thus our stronger version of diamond is trivially false in that  case, so 

that our definition seems defective. However as we shall see below (Corollary 

10.6), under the same assumptions 0~,x(S) is trivially true, and thus not very 

meaningful either. 

Clearly the definition of our principle makes it possible for a given sequence 

s,~, a < #, to be a <>n: ~,: ~([A]<n)-sequence for various x's or A's. The following 

two propositions illustrate that fact. 

PROPOSITION 7.3: Assume s~, a < #, is a <> ~: ~,: x( S)-sequence, and let v 6 [#, i] 

be a cardinal. Then s~, a < #, is a <>n: ~: ~({a n v: a 6 S})-sequence. 

Proof." Left to the reader. | 

PROPOSITION 7.4: Let p 6 (w, x] be a regular cardinal, and assume that s~, 

< ~, is a <>n: ,: ~(S)-sequence ,  where S C {a e [~]<n: cof(U(a n ~)) < p}. 

Let T be the set of a/l b 6 [i] <p such that there exists a 6 S with b C_ a and 

u(b n ~) = u(a n ~). Then . . ,  ~ < ~, is a O.: ~: ~(T)-sequence. 
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Proof." Left to the reader. I 

Let us point out that  the above result can be somewhat refined (see Proposition 

11.4). 
Throughout the remainder of this section, M will denote a fixed transitive 

model of ZFC, and A will denote an uncountable cardinal of M. 

Let us first recall (see [19]) the following fact. Suppose (P, <) is, in M, an 

0~l-closed notion of forcing, and let G be P-generic over M. Then (NS~I+ ,~)M = 

(NS+ t,x)M[O] N M. The following is also well-known. 

LEMMA 7.5: In M, assume that A is regular, let i¢ E [~J1, )t] be a regular cardinal 

and let (P, <) be a A-closed notion of forcing. Let G be P-generic over M.  Then 
+ M = (NS£ )MIal n M. 

Proof." Let p E G and F be such that p forces that F E A A×x. Now working in 

M, construct pa E P and f~ E A ~x~, a < A, so that 

(i) p0 < p; 

(ii) fl < a implies pc, < p~; 

(iii) p~ forces that  F[a x a = f~. 

Finally set f = U~<xf~.  Given S E NS+~,  pick a E SnCl , , ,  with Ua ¢ a. Then 

Pu~ forces that a E CF,~. I 

The following can be found in [151 (see Proposition 3.7 there). 

PROPOSITION 7.6: Assume that A is regular in M,  and add a Cohen subset of A. 

Then in the extension, there is a sequence sa C_ A, ~ < A, that is a ~ :  :~: ;~(S)- 

sequence for every regular cardinal t¢E (w,A] and every S E N S+~ f3 M.  

If we restrict our attention to the case t¢ = w1, then Proposition 7.6 can be 

generalized as follows. 

PROPOSITION 7.7: In M, let p, p be uncountable cardinals such that p is regular, 

cof(#) > p, # < A and #, A ¢~ (p, 2<P]. Let G be Fn(A x #, 2, p)-generic over M.  

Then in M[G], there is a sequence s~ C_ )~, a < #, that is a Q,,,: •: ~(S)-sequence 

for every card/hal v E [#, A] and every S E NS+I,v N M.  

We omit the proof of Proposition 7.7, as it is very similar to the proof of the 

following. 
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PROPOSITION 7.8: Let # be a regular uncountable cardinal in M such that )~ > # 

and A ¢ (#, 2<~], and let G be Fn(w x #, 2, I~)-generic over M. Then in M[G], 
there are s~ C_ w, a < I~, such that h[Su(an~)], a E [A] < ~ ,  is a (>~a,x(S)-sequence 

for every S E N S+ ,x N M. 

Proof." Set s,~ = {n • w: (UG)(n, ot) = 1} for all a </~, andfix S • N S + , x N M .  

Let p • G and B, F in M[G] be such that p forces that B • 2 x and that F • A x×x. 

We will now work in M. Let p~,, 7 < 2<~', be a one-to-one enumeration of the 

set of all pt _< p. Let D denote the collection of all x • [A. 2<~'] <~1 such that for 

every 7 • x N 2 <~', the following two conditions hold : 

(0) G i v e n z : 2 ~ x N A a n d ~ ? •  xMA, t h e r e a r e S E x N 2  <t ' ,~  • x M A a n d  

m < 2 such that p~ _< p-~, and P6 forces that F(z(O),z(1)) = ~ and that 

= m .  

(1) Given (n ,~)  • dom(p.r) , fl < O(z N #). 

It is not difficult to see that D is a closed unbounded subset of [~. 2<~] <~  . Now 

pick x • D such that w _C x, x M ~  • S a n d  U(xM#)  ~ x. Let z , ,  n • w, 

enumerate (x M ~)2. For each n • w, define 7n • X M 2 <t', ~n • X fq A and m n <  2 

so that 

(0) P'/.+I < P'c.; 

(1) p.~. forces that F(z , (0) ,  z , (1))  = ~, and that B(z  N A(n)) = m , .  

Finally set q = (UncaPs.)  U {((n,U(z M/~)),mn): n • w}. Then q forces that 

F[(x M A) × (x N A)] _C x (1 A and that x N A[so(xng)] = {o~ • x M A: B(~)  = 1}. 

I 

Let us point out that if n > wl, then both Proposition 7.7 and Proposition 

7.8 can be partially generalized using the methods of Section 14. To give an 

example, assume that in M, 2 ~ = R2, and add a Cohen subset of w2. Then in 

the extension, there are s~ C wl, o~ < w2, such that 5[Su(~n~,2)], a • [ws] <~', 

is a Q~,~3(S)-sequence for all S • ( N S  + ~M with S C {a: cof(Ua) # w~ or 

cof(u(  n ¢ 

s .  

Let p > 1 be a cardinal, and let S C [A] <~. We say that t ,  C_ P(a), a e [A] <~, is a 

~ ,x(S) -sequence  if for every E e [P(A)] <p, the set {a e S: t .  = {Ana:  A e E}} 

is stationary in [A] <~. The principle ~ , x ( S )  asserts the existence of such a 

sequence. 
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We let ND~,~ denote  the  set of all S _ [A]<~ such tha t  ~ , ~ ( S )  does not  hold. 

Notice tha t  NDP~ C_ ND~',~ whenever  p'  _> p. Also, ND~,:~ = ND~,~. 

We observe tha t  ND~,~ is an ideal over [A]<~ extending NS~,)~. 

PROPOSITION 8.1: Assume either that p is a successor, or else that cof(p) > )~. 

Then ND~,n is a normM ideM. 

P Proolq Let Q~ E ND~.x, a < ,~. For each a < ,~, let W~ be  the set of  those  

a E [,~]<~ such tha t  a E a and a E Q~ - U~e~n~Q~.  Set W = U a < n W a "  Let 

a bi ject ion j :  ,~ × ~ --* ~ and a sequence u~ _C P(a ) ,  a E [)q<~, be given. Pu t  

ta = e a: e d): d E for al! a e For each < select 

E~ e [P(A)]<P such tha t  {a E W~: t~ = {A M a: A E E~}} E NS~,~. P u t  

# = U~<~ levi ,  and  for each a < )~, choose F~ E P()Q~' with ran(F~)  = S~.  Set 

B- t = { j ( a ,  fi): a < ~ and/~  E F~(7)} for all 3' < #, and let 

S =  { h e  W: ua ={af) BT:7<#}}. 
+ 

Suppose  S E NS~,a. Then  one can find a E ~ and T E NS~+,~ with 

T C_ S N W ~ M { a  E [ A ] < ~ : j [ a x a ]  = a}. We h a v e t ~  = {F~(6) M a : 6  < #} 

for all a E T, a contradict ion.  I 

An easy modif icat ion of the above a rgument  shows tha t  ND~,a is u-complete  

for every cardinal  u _< ~; wi th  cof(p) >_ u. 

This  is a general izat ion of Proposi t ion 1.6 of [15]. 

PROPOSITION 8.2: Let S C_ 
a E [A] <~ and F E 2 x, such 
NS~+A/'or MI V E [P(A)~] <p 

[A]<~ with S ¢ ND~,A. Then there are t f~ C_ P(a), 

tha t  {a e S: Va e a t H(") = {q(a)  n a: q E Q)}  E 

and one-to-one H: )~ ~ 2 A. 

Proof." Let sa _C P(a), a E [,k] <~, be  a Q~,A(S)-sequence. Select a bijection 

v: A --* A × )~ x A × A. For each a E [A]<~, choose j , :  2 ~ --~ P(P(a)) with the  

following proper ty :  in case 

= {{(o~,fl ,7,6 ) e a × a × a × a: h(a) ( f i )  = 7  and 6 e w(t~)}: w e W},  

where h: a ~ 2 ~ is one-to-one and W C_ P ( a )  a, then  for every a E a, j~(h(a)) = 

e w } .  

Given a E [)q<~ and F E 2 A, set t F = ja(FIa ). Let Q e [P(A)A] <p and  
a 

H: A ~ 2 A be given with H one-to-one.  Pu t  

g = {{(a ,  f l , 7 ,~  ) 6 A x A x )t x ~: H(a)(fl) = 7  and 6 6 q(a)}:  q 6 Q}. 
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Let D denote the set of all a • [A] <~ such that v[a] = a x a × a × a and that  the 

function h: a ~ 2" defined by h(a)  = H(a) ia  is one-to-one. Since D is closed 

and unbounded, the set T of all a • D N S with s .  = {a f3 v -I[A]: A • K} is 

stationary in [~]<~. It is readily checked that t H(°) = {q(a)Na: q • Q} whenever 

t r E a E T .  I 

COROLLARY 8.3: Given S • P([~]<~) - ND~,x, there are padrwise disjoint To ¢ 

ND~,x, a < )~<~, with Uo<x<, To = S. 

Proof: Let t F a • [A] <~ and F • 2 x, be as in the statement of Proposition 8.2. 
I 1 '  

Let G • 2 x be fixed. For each d • [A] <~, set Td = {a • S: t a = {d}}. Pick a a 

one-to-one H: $ --* 2 x with H(0) = G. Let d • [)~]<" and E • [P(~)]<P be given. 

Choose Q • [p($)x]<p so that {q(0): q • Q} = {d} and {q(1): q • Q) = E.  

Let Y denote the set of all a • S such that 2 U d C a and that  for all a • a, 

t H(°) = {q(a) N a: q • Q}. Then Y is stationary, and Y C_ {a • Ta: t H0) = 

{AN a: A • E}}. I 

We next show that the truth-value of <>~,x(S) is the same for all small values 

of p, and for all large values of p. 

COROLLARY 8.4: NDs,x = ND~, x. 

Proof." Let S • P ( [ ~ ] < s ) -  NDs,x.  By Proposition 8.2 there are t f C a, 

a • [A] <" and F • 2 x, such that {a • S: Vet • a t~  (°) = q(a) 13 a} • NS,,+x 

for all q • P(A) x and one-to-one H: A --* 2 x. Choose such an H,  and for each 

a • [~1<', set t ,  = (tH(°): a • a}. Given E • Uoe¢0,~)p($)o, let q • p(~)x be 

such that ran(q) = ran(E)  and qldom(E) = E. Then {a • S: Va • a t H(°) = 

q(a) n a} n (a • [~1<': dom(E) C_ a} C {a • S: ta = (S(/3) n a :  • dom(E)}}. 

I 

= ~rD()~<~) + PROPOSITION 8.5: ND(s2,~ )+ "" ~ , X  " 

(2x)+ 
Proof: Let S • ND~,x . Fix a sequence t .  C_ P(a), a • [$]<", and pick 

E C_ P($)  such that {a • S: ta = {A f3 a: A • E}} • NSs,x.  Set 

W = {b e [~1<~: tb C {A N b: A • E}}. 

For each b E W, pick Ab E E with Ab N b ~ tb. Now 

{a E S: ta = {Ab N a: b E W}} E NS,~,x. 
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~ n ( [ M < ' )  + Thus  S • , ,  ~ , ; ~  . I 

The  following is easily verified. 

~¢n(2")+ where u is an infinite cardinal < ~. PROPOSITION 8.6:  Assume [A] <~ ~ , , ~ , x  , 

Then 2 2~ <_ A<'L 

Thus  if ~ is not  a s trong limit, we have P([*¢]<~) = ND,,,,,."+ 

9.  G a m e s  

Let n < w, and let #i E (to, A], i _< n, be a strictly decreasing sequence of regular  

cardinals. Set # ,+1 = ~, and for each i < n + 1, let Si C {a: co l (a )  < n} be a 

s ta t ionary subset of #i. Fix q • n + 1, and assume tha t  Sq _ {a: cof (a )  = w}. 

Let X be the set of all a • [A] <s such tha t  U(a N #i)  • & for all i < n + 1. 

We assume the following : 

(i) 2 <s < #q in case x is ei ther a limit or the successor of a cardinal  with 

uncountable  cofinality; 

(ii) v <~ < #q in case ~ = u + and cof(u) = w. 

Let F • A ~x;~ be given, and let To and u be as in the proof  of Proposi t ion 3.7. 

Define k: #<~ - {0} -~ [A]<" as follows: 

(i) Assume ~ is either a limit or the successor of a cardinal  with uncountable  

cofinality. Then  k(a0, ..., am)  = e(F, u U {a0, ..., am},  ~). 

(ii) Assume tha t  ~ = v +, where col(v)  = w, and let cardinals vm < v, m < w, 

be such tha t  Um<~ vm = v. Together  with k we will define an auxiliary 

function h: #<~ - {0} ---} [A]<~: 

(0) h(ao) = {a0} u ~ u-'%[vo]; 
(1) k(a0) = h(a0) u f[h(~0) x h(~0)]; 
(2) h(a0, ...,am+l) = k(a0, . . . ,am) U {a,~+a} U ~ [ v m + l ] ;  

(3) k(~0,..., ~m+l) = h(~0, ..., ~+1:)  u F[h(~0,..., ~+1)  x h(a0,..., ~+1)1.  
Now for every a < ~, we let the infinite two-person game G(a) be played 

according to  the following rules. 

A move of Player  I consists in selecting fl < pq and c C 4. II answers each t ime 

by choosing 7 < #q. I (respectively II) thus constructs  ~ • #~ and X • P(a)  '~ 

(resp. ¢ • #~). I wins iff the  following are satisfied : 

(*) ~(m + 1) > ¢(m). 
(**) There  is a strictly increasing bijection fin: x (m)  ---} k(~(0) ,  ..., ~ (m)) .  

(***) j,,, c_/,,,+1. 
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(****)  U(u n/~i) : Ue(F, u U ran(~), ~;) n/~i for all i < n + 1 with i • q. 

Let us observe that c(F, u U ran(~), ~) = U,~<w k(~(0), ..., 7~(m)). 

Choose 6 < ~ and a stationary subset TI of To such that for all a E T1, 

o.t. ~(F, u u ran(&), ,~)  = ~. 

LEMMA 9.1: I has a winning strategy in g(6). 

Proof." We will define a winning strategy a for I in G(6). Consider a run of 

the game where II plays ¢ 6 /~ .  For each a 6 T1, let ~ be the increasing 

enumeration of e(F, u U ran(&), ~). Inductively define X,~,/3,,, and cm, m < w, 

as follows : 

(i) Xo is a stationary subset of T1; 

(ii) ro E ['/~ex0 ran(&); 

(iii) co = ~-l[k(fl0)] for all a E X0; 

(iv) X,~+I is a stationary subset of Xm; 

(v) #,.+i >_ ¢(m); 

(vi) #,,,+~ e [ ~ x .  ran(a); 

(vii) cm+l = a-l[k(fl0, .. . ,rm+l)l for all ot E X,,,+I. 

Then set ~r(0) = (rio, co) and a(¢(0), ..., ¢(m)) = (r,~+l, Cm+l). 

Given a < ~¢ and X E P(a )  ~', we define a new game G(a, X) as follows. I 

(respectively II) constructs ~ E/z~ (resp. ¢ Z g~), and I wins iff (*), (**), (***) 

and (****) are verified. 

LEMMA 9.2: There are 6 < t¢ and ~ 6 P(6) ~' such that I has a winning strategy 

in a(~, O. 

Proof: Let 6 be as in the statement of Lemma 9.1, and let a be a winning 

strategy for I in G(6). We will define ~ E P(6) ~ and a winning strategy a' for I 

in a(6, ~). Let ~(0) = co and a'(0) = rio, where (rio, co) = a(0). Given 7,,, < ~tq, 

m < j ,  set Be = {7 < Pq: ~r  </zq a(70 , . . . ,3 '1-1,7) = (/~, c)} for all c C a. 

Then pick c with IB~I = ~q, and put  ~(j + I) = c and ~ ' (70, . . . ,7j)  = r ,  where 

(#,c)  = ~(7o , . . ,~ j_~ ,  n(Bo - ~ ) )  t 

LEMMA 9.3: There are a < ~ and X E P(a)  ~ such that U,~<,~ x (m)  = a and I 

has a winning strategy in G(a, X). 

Proof." Let 6, ~ be as in the statement of Lemma 9.2. Put a = o.t.(U,,,<,~ ((m)). 

Then letting j :  a ~ I.Jm<~, ~(m) be the increasing enumeration of U,,,<,~ ((m), 

set x(m) = j- l [~(m)]  for all m < w. t 
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PROPOSITION 9.4: Assume ~ = wl. Then [C N X[ = A ~° for every C E NS~I,x.  

Proof: By Lemma 9.3, there are a < wl and X E P(a)  ~ such that Um<~, x (m)  = 

a and I has a winning strategy in G(a, X). It is not difficult to find Q E a ~ 

such that  I has a winning strategy a in the game G(a, X, Q), which is defined 

as follows. I (respectively II) builds ~ E /~  (resp. ¢ E /~) .  I wins iff (*), 

(**), (***), (****) hold, and moreover jm(Q(m))  = 7,(m). Let H: #<~ ---* #q 

be such that H(70, ...,Tin) = t.J(/~q M k(a(O), ..., a(70 , ...,Tin))), and set D = {7 < 

/~q: H[7 <~] C_ 7}. D clearly is a closed unbounded subset of/zq. Select 7 E DNSq. 

Let < be the total order on Um<~ such that 

(i) f < g whenever dora(f) < dom(g); 

(ii) if f ,  g E 2 m+l and f ire ~ glm, then f < g iff glm < fire; 

(iii) if f E 2 m, then f U {(m, 0)} < f U {(m, 1)} iff m is even. 

Now by induction define ~! and 7f, f E Um<,~ 2m, as follows: 

(a) = 

(b) Zs =  (3'sll, 3'Sl2,-.-, 3's) whenever f # 0; 
(c) let f ,  g be such that g < f and for every h < f ,  h < g. Then set 3'f = "~(m) 

in case g e 2 '~ and f E 2 'n+x , and 3'f = ~u + 1 in case dom(f)  = dom(g). 

For each h e 2 ~, set x(h) = e(F, uU{/3hl,,: m e w}, ~). Clearly x(h) e CF,,,NX. 

Also x(h) - z (U)  ~ 0 and x(h')  - x(h) ~ 0 whenever h ~ h'. Finally observe 

that by Proposition 2.3, ,k R° = 2 ~° • u(wl, .k). I 

Let p > 1 be a cardinal with 2" < /zq for every cardinal r/ < p. Also let 

E • [P()~)I<P be given. 

Given a < ~ , X • P ( a ) "  and ~ • 1-I,n<,~ P ( x ( m ) )  E, we define a new game 

V(a,  X, ~) as follows. I (respectively II) builds qo • #~ (resp. ¢ • #~). I wins 

iff (*), (**), (***), (****) hold and moreover for all A • B, j,n[~(m)(A)] = 

A M k(~(0), ..., ~(m)). 

LEMMA 9.5: There are a < ~, X • P (a )  ~ and ~ • 1-Im<~ P ( x ( m ) )  E such that 

Um<~ x (m)  = ~ and I has a winning strategy in G(~, X, ~). 

Proof: By Lemma 9.3, one can find a, X, a such that Um<~ x(rn) = a and a 

is a winning strategy for I in G(a, X)- We will define ( • l'Ira<~ P(x(m)) E and 

a winning strategy a' for I in G(a,X,~). Let j0: X(0) ~ k(a(O)) be onto and 

strictly increasing, and define ~(0) by letting ~(0)(a) = j o l [A  fl k(cr(0))]. Put 

a'(0) = a(0). Given 3',~ < #q, m < j ,  let for every 3' < /~q, J~: x(J + 1) --, 
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k(a(0), ..., a(70, ..., 7j-1,7)) be onto and strictly increasing. Set 

Bd = {7 < Pq: VA e E J~*[A N k(a(0), ..., o(70 , . . . ,7i-1,7))]  = d(A)} 

for all d 6 P(x(J + 1)) E. Then pick d with IBdl = pq, and put  ~(j + 1) = d and 

a'(7o, ..., 7#) = a(~:o, ..., 7#-,, n(B~ - "ri)). I 

Let us now make one further assumption on ~. We assume that 2 ~ _< pq in 

case ~ = u + and col(u) = w. 

PROPOSITION 9.6: X ¢ NDP~,A. 

Proof: First choose pairwise disjoint Ty C Sq, Y 6 Ua<~[P(a)] <p, so that  each 

Ty is a stationary subset of pq. Given a 6 X,  let j :  : o.t.a ~ a be the increasing 

enumeration of a. If U(a n pq) 6 Ty for some Y, set ta -- {j[y N o.t.a]: y • Y}; 

otherwise put  t~ -- 0. Now let F:  A / A --* A and E • [P(A)] <p be given. Let 

a,  X, ~ be as in the statement of Lemma 9.5, and let a be a winning strategy for 

I in G(a,  X, ~)- Set Y = {U,,<~ ~(m)(A): A • E}.  Let H: #<~ ~ Pc be such 

that  H(70 , -..,Tin) = U(pq N k(a(O), ...,a(70 , ...,Tin))), and set 

D = {q < #q: H[7 <~] C_ 7}. 

Select 7 6 DNTy,  and put a = U,~<~ k(a(0), ..., a(-~(0), ..., "~(m))). Then o.t.a = 

a and U(a N p~) = 7. Moreover a 6 X N CF,~ and t~ = {A N a: A 6 E}. 1 

The following corollary states the special case of our result when ~ = wl and 

A = 2 ~°. 

COROLLARY 9.7: Assume 2 ~° is a regular cardinal with 2 ~° > Wl, and let S C_ 

{a: cof(a)  = w} he a s t a t i o n ~  suh~t o~2 ~°. Then 

{a  e [2~°]<~*: U a 6 S} • gD~,,2~o. 

A simple trick can be used to cover more cases. For example, assuming 2 < ~  = 

l~+~,  we obtain that  [bt~+~] <~" ¢ ND~:,~+~ for all n 6 [1,w). This is how we 

do it. 

PROPOSITION 9.8: Let p 6 (~,A] be a cardinal such that 2" < A /or every 

< p. Then ¢ 1VD , . 

Proof." The result is immediate from Proposition 9.6 in case p is a successor. 

Thus assume p is a limit, and let Pa < P, a < cof(p), be a sequence of cardinals 
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with ~a<¢o~(a) Pa = P" Select pairwise disjoint stationary subsets Sa of x. col(p), 

a < cof(p), with each S~ C_ (fl: cof(fl) < ~¢}. For each a < cof(p), let Xo be the 

set of all a E [A] <~ such that cof(U(a ~ (2 ~'a°)+)) = w and U(a ~ n.  col(p)) E Sa. 

By Proposition 9.6 Xa ¢ ND~ x for all a with (2 ~'ao)+ ¢ cof(p). It is easily 

ND~, x. | seen that U,.<co(@) x ~  ¢ 

10. O~,~,,x 

Let v be a cardinal with ~ < v < A. Given S C_ [A] <~, the principle O~,v,x(S) 

asserts the existence of a sequence s~ C Ua, a E [A] <~, such that  for all A _C A, 

the set {a E S: sa = A N (a U U(a N u))} is stationary in [A] <~. 

Let ND~,v,x be the set of all S C_ [A] <~ such that  ~ ,v ,x(S)  does not hold. 

ND~,v,x is easily shown to be an ideal. We have that ND~,u,x C_ ND~,u,,x 

whenever u' >_ u. Also, ND~,~,x = ND~,x. 
The following is easily checked. 

PROPOSITION 10.1: (i) / f  cof(u) >_ ~ and [A] <~ ¢ ND~,~,x, then 2 <~ <_ )~<~. 

(ii) / fcof(u) < ~ and [A] <~ ¢ gD~,u,x, then 2 ~ < A<~. 

A+ PROPOSITION 10.2: (i) /£cof()~) < ~, then ND~,~ C_ ND~,x,~. 

(ii) Ifcof(A) _> ~, then ND~,x C_ gD~,x,x. 

N + Proof: Set p = A in case cof(~) > ~, and p = A + otherwise. Fix S E D~,x,x. 

We will show that there are ta C_ P(Ua), a E S, such that 

{a E S: ta = {A N Ua: A E E}} E NS~+x for all E E [P(A)]<P. 

We will first define a one-to-one function j :  A x A --~ A. If A is regular or cof(A) < 

~, then let j be arbitrary. Now assume ~ < cof(A) < A. Let/~'r, 7 < cof(A), be a 

strictly increasing sequence of infinite cardinals such that A = U~<cof(x) ~-r, and 

that for every limit ordinal 7 E (0, cof(A)), #x = U~<~ g6. Let j0:#0 x #0 ~ #0 

be one-to-one, and for every 7 < cof(A), let J7+1:#~+1 x #~+1 -~ #~+1 - ~u7 be 

one-to-one. Then set j ( a ,  fl) = j6(a, fl), where 6 is least with {a, fl} C #6. Let 

sa C Ua, a E S, be such that {a E S: sa = A Iq Ua} E NS~+x for all A C_ )~. 

Given a E S, put d~ = {fl E Ua: j (~ ,~ )  E s~} for all o~ < ;L Then set t~ = {0} 

in case U~<~d~ = 0, and ta = {d~: U~>ad~ ¢ 0} otherwise. Now let /~ < p 

and Ea C A, a < #, be given such that # is an infinite cardinal and for every 

a, I{fl </~: Ea = Ep} I = #. Put  A = Ua<~{j(a,  fl): ~ E Za}. Suppose a E S 
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is such that Ua ¢ a, s ,  = A n Ua and for every ~ • a, j i g  x ~] _C Ua. Then 

t~ = {E~ n a: a < ~}. | 

PROPOSlTmN 10.3: ND~,~,x = ND~,x whenever 2 <v < A. 

Proof: Choose bijeetions j :  2 x A --, A and h: 2 <~ ~ Ua<~ P(a). Assume 

S C [,k] <" and s .  C_ a, a • [A] <x, are such that {a • S: s .  = A N a} • NS+x for 

all A C 2~. For each a, set 

u .  = {/~ < x: j(0,/~) • s .} ,  , .  = u h [ b  < 2<h  j (1 ,7)  • ~.}], 

and finally t ,  = (v, n U(a n u)) u u, .  Now let B C A be given, and define 

$: u --, 2 <v by letting f (a)  = h-X(B n a). Set 

A = {j(0,/~): fl 6 B )  U {j (1 , f (a ) ) :  a < v). 

Suppose a 6 S is such that A n a = sa, 2 C a, j[2 × a] = a and f[a n v] c a. 

Then t ,  = B n (a u u(a  n v)). I 

COaOLLAaY 10.4: Assuming the Generalized Continuum Hypothesis, N D ~,x = 

ND~,x,x = NDX~?;. 

Proof:" By Proposition 10.3 and Proposition 10.2. | 

PROPOSITION 10.5: Let p > A be a cardinal, and let S C_ [A]<~ be such that 

ID n Sl = 2 <p for every dosed unbounded subset D of [A] <~. Then there exist 

t ,  C P(~),  a 6 [,k] < ' ,  such that (a 6 S: ta = E} 6 NS,+,x for all E 6 [P(A)] <p. 

Proof: Fix a bijection j :  A <~ --+ [P(/k)] <p x A x×x. Now by induction on a < ),<~, 

define aa 6 S and ta~ C P()0  so that 

(0) /~ < a implies a~ # an; 

(1) aa n ~ e ~; 

(2) if j ( a )  = (E,F),  then f[aa x an] C aa and ta, = E. I 

Notice that given S C [A] <~, S splits into 2 x many pairwise disjoint stationary 

sets iff there are ta C A, a E [A] <~, such that {a 6 S: ta = A} E NS~+,x for all 

A_C~.  

COItOLLAa¥ 10.6: Assume A is a strong limit with cof(A) < t~. Then ND~,x = 

NS~,x. 

Proof.." By Corollary 2.4 and Proposition 10.5. II 
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COROLLARY 10.7: Assume that A • [w2,2 ~°) and that 2 <2~° = 2 ~o. Let b C 

[0J1, A] be a finite family of regular cardinals, and for each # • b, let S.  • N S  + 

with S ,  C_ {a: cof(ex) = w}. Then {a • [A]<w': V/~ • b U ( a f q / z )  • S ,}  • 

(2~)+ ND~:,x. 

Proof." By Proposition 9.4, Proposition 10.5 and Proposition 8.6. I 

I I .  F r o m  o n e  d i a m o n d  s e q u e n c e  to  a n o t h e r  

PROPOSITION 11.1: Let p > 1 and u > A be cardinals, and let S • P([A] <~) - 

ND~,A. Further let T • NS++,,, and ga • A ~ and D~ • NS*,a, a • T, be such 

that each ga is a bijection, and g~[y] = gd[y] whenever a, d • T and y • Da rq Dd. 

Then {y • UaeTDa: yf3A • S} e ND~, v. 

Proof," Let tb C_ P(b), b • [A] <~, be a <~,~(S)-sequence. Given a • T and 

b • S such that A C a and g~l[b] • D~, set Ug;~[~] = {g~-l[x]: z • tb). Now 

f i x E  • [P(v)] <p andF0:  v x v - *  v. Select a • TrqCF0,X+ such that A C a 

and Ua ¢ a. It easily follows from Proposition 1.5 of [16] that there exists 

FI: a x a --~ a such that {d • [el <~: d fq ~ • ~ and F1 [d x d] C d} C {0} U D~. For 

each i < 2, define Gi: ), x ~. ~ A by letting Gi(~,3) = g,(Fi(g:l(a),g:l(13))). 

Then select b • S so that 

(i) b • Ca0,~ n Cc~,~; 
(ii) g~'~ [b] f3 A = b; 

(iii) t, = {bng,[AOa]: A • E}. 

It is easily checked that g~l[b] • D, N DFo,~, and that 

ug:,[b ] = { A n  g~-l[b]: A • E}. I 

Notice that the results of Section 5 give the following. Let v > A be such that 

either v < A +~, or u(A +,/~) _< v for every cardinal/~ • [A +, v), and cof(v) ¢~ 

[~, A]. Then one can find T • NS++,v such that there exist pairwise disjoint 

Da • NS*,a, a • T. On the other hand, the existence of such a T clearly implies 

that s(A+,v) _< v <~. 

PROPOSITION 11.2: Let v > A be a cardinal such that either g = A +~, or 

v = ana  co l (v )  • Then one fina T • ana 
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g. E A a and D .  E NS~,,., a E T,  such that each g. is a bijectlon, and ga[y] = gd[Y] 

whenever . ,  d 6 T and y 6 D .  ADd.  

Proof" Select a bijection j :  eof(v)  x A -~ A. Also choose cardinals g~ < v, 

< col(v) ,  such tha t  

(i) v0 = 0 and vl = A+; 

(ii) v~ < v~+x; 

(iii) v~ = U~<a va whenever a is an infinite limit ordinal; 

(iv) v = U~<,of(~) v,~. 

Let 2 be the set of all a E Iv] <x+ such tha t  [a N [v~,v~+l)[ = A for every 

< col(v).  We are going to define T C_ 2 ,  and r: cof(v) x T ~ Iv] <~ such tha t  

r ( a ,  a) C_ a. Suppose tha t  has been done, and let a E T be given. We let D ,  be the 

set of all y E [a] <~ such tha t  r ( a ,  a) C_ y for every ~ < cof(v)  with yN[v~, v~+l) 

0. We define go: a --~ A so that  g,(~) = j (a , (aN[ve, ,ve ,+l)) - l (~))  whenever 

• a N [v,~, v~+l). Let us now define T and r. Let us first consider the case when 

v = A +~. We let T be the set of all a • C~,~ such that  la N [A +'r, A+(~+x))] = ), 

and cof(U(a N A+(~+~))) < t¢ for every 7 • to. Clearly T • NS,,+~,. For every 

a • T,  define R, :  t¢ ~ [a] <* so that  UR, (7 )  = U(a N [A+'r,,k+('r+~))). Then  set 

r ( a , a )  = U-req~ R , (7 ) ,  where q~ = {7 < i¢: A +x < v~+l}. 

Now for the other  case. Select h: v --* [v] <;~+ with ran(h)  • UB(A +, v), and fix 

a regular  cardinal V • [w, ~¢). Let T be the set of all a • Z such tha t  U a ¢ ,  h(fl) C 

a, and there  exists R: cof(v)  ~ [a]~' with a N v~+~ = Uzen(,~) h(/~) N v~+~. The  

definition of r should be clear. It remains to show that  T • NS++,,,. Thus let 

F:  v x v --* v be given such tha t  U~eo h(fl) c a whenever A C a and F[a x a] C_ a. 

Define a - ,  7 < I z, and 6.~, 7 < # and a < cof(v),  so that:  

(0)  a0 = + ¢: ¢ < 

(1) (a~ r U F[a.~ x a~]) n v~,+l C_ h(*.~); 

(2)  : < cof( )} u ; 

(3) a~ = U¢<z a¢ whenever 7 is an infinite limit ordinal. 

Then  set a = UT<v a-r. We have that  F [ a x  a] C a, A C a and a • T, as desired. 

I 

A modificat ion of the proof  of Proposi t ion 11.1 yields the following. 

PROPOSITION 11.3: Assume A is a s , tong limiL wit/a cof(A) < ~¢. Let S • NS+~,, 

and let T • NS++ with T C_ {a: cof(cx) < to}. Then 

D + { y • [ A + ] < ~ : y M A • S  and Uy•T}•N ~,),+,;~+. 



Vol. 83, 1993 TWO CARDINAL VERSIONS OF DIAMOND 33 

Proof." By Corollary 10.6 and Proposition 10.3, there are Sb C_ )~, b • [~]<~, 

such that  {b • S: sb = A} • NS+x  for all A C_ A. Given a • T and b • S such 

that  ~ C a and ran(&) C &[b], set ub[b] ---- &[Sb]. Then proceed as in the proof of 

Proposition 11.1. I 

PROPOSITION 11.4: Let p > 1 be a cardinal, and let I~ • (~,,k] be a regu/ar 

cardinal. Let T • P([~]<") - gD~,x ,  and let w~ • N S + , ,  a • T, be a pairwise 

disjoint family. Then UaET Wa ~. N D  ~, 

_ ^I+PtT~ sequence Select bijeetions Proof: Let t ,  C P(a),  a • [~]<~, b e a v ~ , x ~  ,- 

j :  A x A x A - - *  A a n d g :  2 x A - - *  A. GivenA___ A a n d f :  A x A ~  A, set 

Gf  = {(a , /~ , f (a ,  fl)): a,/3 • A} and BI  = {g(1, j(z)):  x • Gf} .  Let S consist of 

all a • T such that  ~ C_ a and I{f • aaX~: By • t ,}l = 1. Given a e S, let f ,  

be the unique f • a *×a with Bf  • t~, and let v~ be the set of all z • w, such 

that z N ~ • ~ and f , [z  x z] _C z. Now pick za • v,, a • S. We will show that 

{z,: a • S}  ¢_ YD~,  x. For each a • S, set y,  = {A • ta: Afq g[{1} x ~] = 0} 

a n d u , .  = {{a • z~:g(0, a) • A}: A • y,}. Now select F : , ~ x , k  ~ ~ and 

E • [p(~)]<a. Put g = {{g(0, a): a • A}: A • E} U {BF},  and choose a • T 

such that t .  = {B lqa: B • g } ,  F[a x a] C a, g[2 x a] = a, j[a × a x a] = a 

and n C_ a. Clearly, a • S and fa = Fin x a. Thus za • CF,~, and moreover 

u~. = {A N z,: A • E}. | 

Let us observe the following. Suppose there exist palrwise disjoint wa • NS+a,  

a • T, where T • ND+,x. Then ,k <~ = ,~<~. 

The following is the analogue of Proposition 11.4 for the principle Q~,x,x. 

+ PROPOSITION 11.5: Let # • (x,~] be a regular cardinal, let T • NDmx,x  , and 
+ let w~ • NS+a,  a • T, be a pairrdse disjoint family. Then U,eTWa • ND~,x, x. 

Proo£" Left to the reader. I 

12. ~*,~ 

Let p > 1 be a cardinal. Given S _C [~]<~, the principle Q*,Px(S) asserts the 

existence of a sequence w~ E [P(P(a))] <-Ial, a E [~]<~, such that for all E E 

{a • s: {A n a: A • E) ¢ w,) • NS ,x. 
*p 

We let D*,~ be the set of all S C_ [A]<~ such that Q~,x(S) holds. 

Notice that  n*P' ___ *P p~ ,2 • ...~,x D~,x whenever _> p. Also, D~, x = D~, x. 
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*p 
PROPOSITION 12.1: D~, A is a normal ideal over [A] <~ extending NS~,A. 

*p 
Proofi Assume Sa • D~,A, a < A. For each a,  let w~ • [P(P(a))] <lal, a • [A] <~, 

be such that  for all E • [P(A)] <p, {a • S: {A M a: A • E}  ~_ w~} • NS~,A. Set 

wa = w~' whenever ix, a are such that a • a and a • Sa - U~eana S~. Now 

fix E • [P(A)] <p. For each cr < A, pick a closed unbounded subset Ca of [A] <~ 

such that  C a N S a  C_ {a: { A N a : A  • E} • w ~ } .  Suppose a # 0 is such that 

a •/XT<AC 7 and a • Uaea Sa. Then {A N a: A • E} • w~. I 

An easy modification of the proof of Proposition 8.2 yields the following. 

*p 
PROPOSITION 12.2: Let S • D~,~. Then therearew F • [P(P(a))] <1~1, a • [A] <~ 

and F • 2 x, such that {a • S: Va • a {q(a) N a: q • Q} ¢ w H(~)} • NS~,~ for 

Q • = d  one-to-one H: - .  2 

*re  PP, OPOSITION 12.3: D~,;~ = Ds,A. 

Proof." Let S • D~,A, and let ra • P(a) a, a • [A] <s, be such that 

{a • S: A n a ¢ ran(r~)} • NS~,;~ for all A _ A. 

Fix a bijection j :  ~ x A ~ A, and denote by D the set of all a • [~]<~ with 

j [ (an  to) x a] = a. For each a, define wa: a ~ P(P(a) )  by letting wa(a) = {{fl • 

a : / (~,f l )  • ra(a)}: $ • af3t¢}. Let G • P(A) v be given, where v is a cardinal with 

0 < v < t;. Let A denote the set of all j(~,fl), where either/~ < u and fl • G(6), 

or else g < $ < t¢ and/3 • G(0). Supposed,  a are such that a • a • 5 ' f3D, 

v _C a and ra(a) = A f3 a. Then Wa(a) = {G(~) f3 a:/~ < v}. I 

n*(2~) + = D*(~<') + PROPOSITION 12.4: ~ , ~  ~,~ . 

~*(2~)+ and let a sequence w~ C Proof." Suppose S C_ [A] <~ is such that S ~/9~,~, , 

P(a),  a • a • [A] <~, be given. Select E C p(A) such that 

{a • S: Va • a { A N a :  A • E}  # w~} • NS+~.  

Let P be the collection of all (a, a) such that a • a • [~]<~ and w~ C {ANd: A • 

E}. Given (a, a) • P,  choose Aa,~ • E with Aa,a N a ¢~ w~. Then 

+ {a • S: {A.,a n a: a) • P} # • NS ,A. I 
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PROPOSITION 12.5: Let u be a limit cardinal with cof(v) _< A. Then D*,,,~ = 

Np~v *P D~,~. 

Proof: Choose cardinals ~ E (0, v), a < cof(v), such that  v -- U~<eof(v)#~, 

n r~*~o For each a < col(v), let w~ E [P(P(a))] <laj, and fix S E I I~<¢of(~)~,x" 

a E [~]<~, be such that  {a E S: { A N n :  A E E} • w~'} E NS,~,~ for all 

for every a E [A] <~. It is easy to see that E e [P(~)]<,o. Set w, = U,,~, ~,  

{a E S: {A  N a: A E E} q[ wa} E NS~,~ for all E E [P(A)] <v. Hence S E D*,~. 

I 

PROPOSITION 12.6: Assume either that p is a successor, or else that col(p) > A. 

*P O ND~, x = NS~,x. Then D ~, x 

Proof: Let S C_ [A] <~ and w=: a -~ P(P(a)) ,  a 6 [A] <~, be given such that  

{a e S: {Ana: A • E} • ran(w.)} • NS~+~ for all E • [P(~)]<P. Fix a bijection 

j :  A x A--+ A, and set C = {a • [A]<~: j[a x a] = a}. Given a < A and a • [A] <~ 

with a • a, set t~ = {{fl • a: j ( a ,  fl) • d}: d • w,(a)}.  Suppose that  for every 

a < A, there exist Ea E [P(A)] <p and a closed unbounded subset D~ of [A] <~ 

such that t~ ¢ {A n a: A • E~} whenever a • a • D~. Put  # = U~<~ lEvi, and 

for each a < A, choose F~ • P(A)" with ran(Fa) = S~. Then define r • P(A) ~' 

by setting F (7  ) = {j(o~,fl): fl • Fa(7)}. It is easy to find T _C SN  CA/k~<~D~ 

with T • YS~+x and o~ < A such that { r ( 7  ) n a: 7 < #} = wa(a) whenever 

a • a • T, which yields a contradiction. I 

This is a version for two cardinals of a well-known result of Gregory and Shelah 

(see Theorem 32 of [18] ). 

PROPOSITmN 12.7: Assume 2 <x = A, and let S be the set of all a • [A] <~ such 

that cof(ua) # cof(lal) and that for awry infinite cardinal ~ < lal, l '  ¢°f(~.) < lal. 
Then S • D*,x. 

Proof: First choose h: i ---+ U.r<xP(7)  such that  Ih-~(b)l = ), for all b • 

Ux<x P('r). For every a • S, set w~ = {U6ed h(a(6)) n Ua: d • U~<l,l[/9]¢°f(u")}. 
Now fix A C i .  Select g: ). --+ i such that h(g(a))  = A N a and g(a)  > a.  Let D 

be the set of all a • [A] <~ such that g[a] CC_ a and Ua g a. Given a • D n S, pick 

b c a such that  Ub = Ua and o.t. b = cof(Ua). Then choose d C h-l[g[b]] with 

o.t. d = cof(Ua). Clearly A n Ua = U6ed h(h(~)). I 

The following is now immediate. 
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COROLLARY 12.8: Ass,min$ the Generalized Continuum Hypothesis, 

{. e [~]<": cof(u.) # cof(I.I)} • D*,x. 

Corollary 12.8 can be used to show the following. 

PROPOSITION 12.9: Assume that the Generalized Continuum Hypothesis holds, 

and that A > to. Let n • w, and let I~i • [~;, ~], i < n + 1, be a strictly 

decreasing sequence of regular cardinals. For each i < n + 1, let Si • NS+~ with 

Si _C {a: col(a)  < I¢}. Then S • ND+x, where 

s = {a • [~]<": vi < n + 1 U (an  l , )  • &}. 

Proof." Wlog assume that /~,+1 = ~¢ and/~ ,  = x+. Select h: /~0 -* [/~0] <~+ 

with ran(h) • UB(g+,l~o), and define ~: [#0] <" ~ [/~0] <~+ by letting %o(a) = 

Uaea h(a). Let Y be the set of all a • [~u0] <~ such that 

(0) vi < n u ( an  ~,) • S~; 
(1)  a u ~ c ~(.); 

(2) Vi < n u (a n ~ )  = u ( ~ ( a )  n ~).  
Then set T = {b • %o[Y]: [.J#e, h(fl) c b}. By Proposition 3.6, Proposition 5.5 

and Coronary 12.8, T • ND++,~,. Define ¢: T ~ Y so that ~(¢(b)) = b. For 

each b • T, let w, be the set of all d • [hi <" such that ¢(b) C d and dO ,¢ • S,+~. 

By Proposition 11.4, U,eTW, • ND+~o. Finally set 

x =  {~ • I~]<': ~n~0 • Uw,}. 
bET 

By Proposition 11.1 and Proposition 11.2, X • ND+x. It remains to observe 

that X C_ S. | 

Note the sharp contrast with the results of [22], which deals with the one 

cardinal situation. 

If one keeps in mind Proposition 5.6, the following can be seen as another 

generalization of the result of Gregory [8]. 

PROPOSITION 12.10: Let p > ~ be a cardinal with 2 <p < ~, let h: )~ --* [A]<~, 

and let ~ < ~ be an i n n . i t •  eardi.&/. Then {a • u~:  lal ~ = lal} • D:,Px. 

Proof." For every a • A, let mR: U0<~<p(2h(~)) t' ~ 2 <p be one-to-one. Given 

a • U~, pick d~ • [a] ~ with a = Uaed. h(a). Then let w~ consist of all functions 

x such that 
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(i) dom(z) is a cardinal; 

(ii) 0 < dora(z) < p; 

(iii) ran(x) C_ 2"; 

(iv) if a • d, and if V: dora(z) ~ 2 a(a) is given by Y(fl) = z(3)[h(a), then 

Fix H: ~ ~ 2 x, where ~ 6 (0, p) is a cardinal. Let D be the set of all a 6 [A]<~ 

such that if a • a and if y: /~ ~ 2 ~(~) is given by y(3) = H(fl)[h(a), then 

ms(y) • a. Given a • D N Uv ~, we have z • to,, where z: # --, 2" is given by 

• (~) = H(#)la. * 

13. ~* 

Let v be a cardinal with ~ < v ~ A. Given S C_ [A]<~, ¢*,v,~(S) asserts the 

existence of a sequence wa G [P(Ua)] <-[a[, a G [A]<~, such that for all ,4 _C A, 

{a • S: A n (a U U(a n ~)) ¢ to.} • NS.,~.  
We let D:,~,~ be the set of all S C [~]<" such that ¢~,~,~(S) holds. 
Notice that D*,v,,~ C D*,v,~ whenever v' ~ v. Also, D:~,~ = D:,~. 

The following two propositions are respectively proved as Proposition 10.2 and 

Proposition 10.3. 

PROPOSITION 13.1: (i) Assume col(k,) < ~. Then D*,~,:~ C D *~+ - -  g , J ~  • 

*A (ii) Assume cof(A) _> x. Then D*,a,a C_ D,,a.  

PROPOSITION 13.2: D*~,x = DI,x whenever 2 <~ < ,~. 

COROLLARY 13.3: Assure/at  the Genera//zed Continuum Hypothesis, D I x  = 

= D*A <" O:,~,~ .,~ . 

Proof." By Proposition 13.1 and Proposition 13.2. | 

PROPOSITION 13.4: Let v, p be card/na/s such that v < ,% p > A and 2 <a = Av. 

Then there exis~ to. • [e(P(A))]-<l'l, a • [A] <~, such *haZ for all E • [P(A)]<P, 

{a • [~l<-: lat" = i~l and E ¢ to,} • 2vs.,~,. 

Proof." Let Ea, d • [A] ~, <P be an emuneration of [P(A)] . Now for each a • [,~1<" 

with ]a] ~ = [a[, set to, = {Ea: d • [a]V}. | 

Let us observe the foUowing. Given S c_ [A] <,,, let Q( s )  mean that there exist 

to, • [p(),)]<l,I, a • [)~1<~, such that for all A C_ A, {a • S: A 9[ to,} • NS,~,x. 

Then Q(S) can be seen as a multidimensional version of the splitting property 
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for S. Let us for instance consider the case t~ = wl (which is easily generalized). 

Then Q(S) holds iff there are Ta,n C_ S, a < 2 x and n • w, such that (i) a ~ fl 

implies Ta,n f3 T~,n : 0; and (ii) S - U n ~  Ta,n • NS~,~. 

We will make use of the following fact. Let u, p be infinite cardinals such that 

u <p = u and u p > u. Then p is regular. 

The following should be compared with Proposition 12.7. 

PROPOSITION 13.5: Let v < t¢ and p > )t be cardinals such that 2 <p = ,~u. 

Assume either that u = cof(A) and A~ = ~+, or that )~<~ = ~. Then there ex/st 

wa e [p(p(),))]<l~l a • [~]<~, such that for a l / E  • [P(~)]<P, 

{a e cof(lal) # U __s lal and E w.) E 
~<I~I 

Proof." By Theorems 1.1.3 and 1.1.4 of [23], there exist b~ E [A]', t~ < A', with 

the property that  Ibm, N b~l < u whenever a,  fl are distinct members of ~u. Let 

g: Ua<~, [ba] ~ ~ [P(A)] <p be onto and such that for every a,  g is constant on 

[ba]'. For every a • [A] <~, set wa = {g(a[e]): e _ lal and o.t. e = u}. Let 

E • [P(A)]<P be given, and let a < Au be such that g(b~) = E. Suppose now 

that  a e [~]<~ is such that ba C a, cof([al) # v and for every cardinal T/< [a[, 

Tf _< lal. Then [wa I -< ]a], and letting j :  o.t.(a -1 [b~]) --* a -1 [b~] be the increasing 

enumeration of a-l[ba], g(a[j[ul]) = E. | 

The following is now easily derived. 

COROLLARY 13.6: Assume the Singular Cardinals Hypothesis. If 2 ¢°f(~) < t¢ 

and 2 <~ < )~+, then {a • [A]<s: cof(Oa) # cof(la[} • D*,~,~,. 

14. Forcing the failure of  <>*~ 

Throughout this section, M will denote a fixed transitive model of ZFC, t: an 

uncountable regular cardinal of M, and A an uncountable cardinal of M. 

We first show that adding one Cohen subset of wl is enough to destroy all 

~*t,x(S)-sequences of the ground model. 

PROPOSITION 14.1: Let P be an wl-closed p.o. in M. Let G be P-generic 

over M, and assume that M[G~ contains an order type wl subset of A that is 

not in M, and that A remains a cardinal in M[G~. In M,  let S E NS+~,~ and 
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e e be give,,. The  in there is A _C 

{aE S : A N a C w . }  E NS+~,,x. 

Proof: Let p 6 G and r, F in M[G 1 be such that p forces that  F G A xxx and 

that  r is a strictly increasing function from wl to A with r • M. Let us now work 

in M. Set 8 = I{P': P' < P}I, and let PT, 7 < 0, be a one-to-one enumeration of 

the set of all p' < p. Define k: 8 ~ wi by letting k(7 ) be the least ~ 6 wl such 

that  for each a E A, p.~ does not force that r(¢) = a. For each 7 < 8, let d r be 

the set of those a E A such that p.f forces that r ( i  ) = a for some ~ < k(7 ). We 

let D be the collection of those z E [8. A] <~t such that for every 7 6 z fl 8, the 

following two conditions are satisfied : 

(0) g x; 

(1) given a, /9 6 xnA,  there exist $i E z n S  and ~i, Iri G xnA,  i < 1, such that 

lr0 # ~r, and for each i < 1, p6~ < p7 and P6~ forces that  F(a, 19) = (i and 

that r(k(7)) = 7ri. 

Then D is a closed unbounded subset of [8. )q<w,. Now pick z E D such that 

w _  x a n d z f ] A  6 S. Let z , ,  n < w ,  enumerate (x fq A) 2. For e a c h u  6 2 <~, 

define 7~ 6 x Iq 8 and (u, lr~ 6 z f] A so that  

(0) u C v implies p.~. < pT. ; 

(1) pT. forces that F(z,(O),z,(1)) = ( , ,  where n = dom(u); 

(2) setting vi = uU{(dom(u),i)} for i < 1, ~r, 0 ¢ 7r n and for each i, pT., forces 

that r(k(7,))  = lrv,. 

Select f 6 2 ~ such that for all b 6 W,nx, Uuc!  d-r. ¢ b N U u c / r u .  Pick q 6 P 

such that  q < P'r. for all u C f .  Then q forces that F[(z N A) × (x N A)] C x N 

and that  ran(r) I'1 x ¢ Wznx. I 

We then keep adding Cohen subsets of wl until all potential <>~,x(S)-sequences 

are destroyed. 

COROLLARY 14.2:  In M, assume that A ¢ wl U (wl,2 ~°] and let v be a cardinal 

with u > A ~°. Let G be Fn(u x w,,2,Wl)-generic over M. Then in M[G], 

D *  ,x = NS~I,x. 

Proof." For each A _C v, let GA consist of all q 6 G such that dora(q) C_ A x wl. 

In M[G], let W 6 l'I,eIx]<-, JR(a)] <~* and S 6 NS+a,x be given. Then there 

exists A C ,, such that IAI < A ~* and S, W 6 M[GA]. Now observe that  

M[G] = M[GA][G,-A], and apply Proposition 14.1. I 
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The obvious drawback of the method is that 2 s~ is large in the generic exten- 

sion. More precisely if we set in M 0 = v (2R°), then in M[G~, v _< 2 ~1 _< 0. 

Let us now turn to the case when ~ > wl. Proposition 14.1 is unfortunately 

not so easily generalized. 

PROPOSITION 14.3: In M, let p E [~, A! and p E [w, ~) be regular cardinals such 

that v <p < ~ for all cardinals v E [w, ~), and 2 <~ = p. ~hrther let in M,  wa E 

[P(a)] <1:1, a E [~]<~, h: A + [A] <* and S E NS+x  with S C_ {a E Uph: lal p > lal}. 

In case p > ~,  assume that  ft < ,~+~', and that  cof(U(a n r)) = p for all a e S 

and all cardinals ~" E [to, ft]. Let G be fn(ft ,  t:, ft)-generic over M.  Then in M[G], 

{ a 6 S: A n a ¢ w . } 6 N S+A for some A C ft. 

Proof: Let p 6 G and F be such that  p forces that F 6 A ~×~. Let us now work 

in M. Let Q be the set of all q 6 Fn(ft, t~, ft) such that q < p and dora(q) 6 ft. 

Select bijections ~: p --* Q and j :  ft x t¢ --* ft. Let D be the set of all a 6 [A] <~ 

such that  

(0) dom(~(7)) E a for all 7 E a n ft. 

(1) Given a,  B E a, 0' E a N ft and 6 E a N ~, there is 7/ E a N ft such that 

~(,7) < ~(~) ,  ~(,7)(dom(~(~))) = 6 ~ d  ~('l) forces that F[h(~)  x h(B)] C_ a. 

(2) j [ (a  n ft) x (a n,~)] = ~ n ft. 
(3) 7 E a whenever there are a E a n ,~ and b E [a]<P such that ~(7) = 

U~eb~(~) .  
(4) Let n E (0,w), let ai  E a N ft, i < n, be such that [a1+1[ > a j  for all 

j < n ,  a n d t h a t  a l  > ~ > a0, and le t  bE  [a0] <p. I f 7  E p is such that 

~(7) = U~e, ~(dn( . . .  (d1(/3))...)), then 7 E a. 

Now pick a E D n C~,~ N S such that [a[ = [a N ~[. Select d E [a] p so that a = 

U ~  h(~), and let ~ ,  ~ < ~, be an enumeration of d ~. Put ~ = U~<~(~ n ~)~. 
We define q! ~ Q, f E R, so that the following hold : 

(i) f C_ f implies q! < q!,; 

(ii) if dora(f) = a + 1, then ~-X(q!) E a, qy(dom(qyl~)) = y(a)  and q! forces 

that F[h(za(O)) x h(z~(1))l ~_ a; 

(iii) if dora(f) is an infinite limit ordinal, then q! = U ! , c !  q!" 

Finally pick f :  p --* a n ~ so that  j[q!] n a ¢ {b f3 j[dom(q!) x ~]: b E w~}. Then 

q! forces that F [ a x  a! _C a and that  j[UG] N a ¢ w,. l 

COROLLAaY 14.4: In M,  let n E w be such that 2 <~+" = t¢ +',  and let p be an 

infinite regu/ar cardinal such that r <~ < t¢ for all cardinals r 6 [w, to). Assume 
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that ~ is either a limit, or else the successor M a card/ned v with v p > v. Let G 

be Fn(~ +(n+l) × ~+n, 2, ~+n)-generic over M. Then in M[G], S ([ D*~,~+. for edl 

S E NS+~,,+, with S c_ {a: Vi < n cof(U(a O to+i)) = p}. 

Proof: Set GB = {p E G: dora(p) C B × ~+n} for all B C ~+(n+l). In 

N + M[G], let S E S~,.+. w i t h S _ _  {a: Vi < n cof (U(aN~+i) )  = p}, and let 

wa E [P(a)] <lal, a E [~+"]<~. Then there exists fl < ~+(,+1) such that both S 

and the sequence w,,  a E [~+n]<~, lie in M[G#]. Now by Proposition 5.6 and 

Proposition 14.3, there are in M[G#][GI#}] , A C_ ~+n and T E N S ~ + .  such 

that T = {a E S: A N a ~ wa}. It remains to observe that by Lemma 7.5, T 

remains stationary in M[G]. | 

An easy modification of the proof of Proposition 14.3 yields the following. 

PROPOSITION 14.5: In M, assume that ~ is strongly inaccessible, let p E [~, A] 

be a regu/ar card/ned with p < ~+~' and 2 <~' = p, and let w~ E [P(a)] <-I*1, 

a E [,~]<~, and h: X ~ [),]<'~. Further let in M S E NS~+x be such that for each 

a E S, there is some cardinal p such that a E U~, lal p > lal and for every cardinal 

e [~, ~], cof(u(a n ~-)) = p. re G is rn0 , ,  ~, ~)-generic over M, then in M[6q, 

{a e s: A n a ¢ wa} e N S ~  for some A C_ ~. 

The following is now proved as Corollary 14.4. 

COROLLARY 14.6: Assuming ~ is strongly inaccessible in M, we have the fol- 

lowing. 

(i) reG is Fn(~ + × ~;,2, ~;)-generic over M, then in M[C], D* = N S . .  

(ii) Assume 2 ~ = !¢ + in M, and let G be Fn(~ ++ × ~+,2,tc+)-generic over M. 

D* Then in M[Gq, S ¢ ~,~+ for edl S E N S  +.,~+ with 

s c (a: cof(Ua) = cof(a n '0}. 

Our understanding of diamond star would be much better if we could generalize 

the following result to uncountable cofinalities. 

PROPOSITION 14.7: In M,  assume that A <x -- ~, let wa E [P(a)] -<lal, a E [~]<~, 

and let S E N3+x be such that For all a E S, lal ~¢0 > laI and cof(Ua) = w. Let 

G be Fn(A, A, A)-generic over M. Then in M[G], {a 6 S: A N a ¢ w ,}  6 NS+x 

for some A C_ A. 

Proof: Let p 6 G and F be such that p forces that F 6 A x×x. Let us now work 

in M.  Let Q be the set of all q 6 Fn(A, A, A) such that q _< p and dom(q) 6 A. 
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Select bijections ~: ~ ~ 0 ,  J: ~ × ~ --~ ~ and ~: ~ ~ U ~  )~x~. Let D be the 

set of all a E [~]<~ such that 

(0) dom(~(7)) E a for all 7 6 a; 

(1) given a,  /3, 7, g, ~ 6 a, there are t/, ( e a such that  ~o(~/) < ~o(7), 

~(T/)(dom(~.0(7))) = ~ and ~(t/) forces that FJ~ x ~ = ~(~); 

(2) j [ a  x a] = a, a n x ~ ,~ and Ua • a; 

(3) O(¢)[(a n dom(~(0)) × (a n dom(~(¢)))] C_ a for every ~ ~ a. 

Now pick a q D n S. Select X: w -+ a with [J,,~,~ x(n) = Oa. We define qf fi Q, 

f q U,~,~ a", so that the following hold : 

(i) f '  C f implies q! < qI" 

(ii) ~0-1(ql) E a. 

(iii) If f 6 a "+z,  then qy(dom(qylm) ) = f ( m )  and qf forces that 

F[(a gl x(m)) x (an x(m))] _ a. 
Set q~ = Una,~q~l,, for all g fi a '~. Now pick g fi a'~ such that  j[qg] n a 

{b n j[dom(q~) x )~]: b 6 w,}. Then q~ forces that F[a x a] C a and that  

j[UG] n a ¢ w,. | 

Following again the proof of CorollmT 14.4, we obtain: 

COROLLARY 14.8: Assume that in M, ~<x = $ and ,¢ is the successor of a 

cardina/of  co~nallty w. Let G be Fn(,k+,2, $)-generic over M. Then in M[G], 

S f~ D*.x for all S 6 NS+~ with S C_ {a: cof(Ua) = w}. 
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